Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

2° Anno  Attivato nell'A.A. 2014/2015

InsegnamentiCreditiTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06

3° Anno  Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2014/2015
InsegnamentiCreditiTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Ulteriori conoscenze
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00253

Crediti

12

Coordinatore

Lidia Angeleri

Lingua di erogazione

Italiano

L'insegnamento è organizzato come segue:

ALGEBRA LINEARE

Crediti

6

Periodo

I semestre

ELEMENTI DI GEOMETRIA

Crediti

6

Periodo

Vedi pagina del modulo

Docenti

Vedi pagina del modulo

Obiettivi formativi

Modulo: ELEMENTI DI GEOMETRIA
-------
Innanzitutto il corso intende introdurre lo studente al linguaggio e al rigore necessari per lo studio della matematica superiore. Vengono poi presentate le nozioni e le tecniche fondamentali dell'algebra lineare e della teoria delle matrici, considerando aspetti sia teorici sia computazionali.

Il corso (nel secondo modulo) introduce inoltre alla geometria analitica del piano e dello spazio, in ambito proiettivo, affine, euclideo. Vengono infine discusse le principali proprietà delle coniche. La trattazione si serve sia di strumenti analitici (coordinate, calcolo matriciale) che sintetici.

Lo scopo finale è rafforzare nello studente la capacità di astrazione, l'intuizione geometrica e l'abilità di calcolo, in vista degli sviluppi e delle applicazioni future.


Modulo: ALGEBRA LINEARE
-------
Innanzitutto il corso intende introdurre lo studente al linguaggio e al rigore necessari per lo studio della matematica superiore. Vengono poi presentate le nozioni e le tecniche fondamentali dell'algebra lineare e della teoria delle matrici, considerando aspetti sia teorici sia computazionali.

Il corso (nel secondo modulo) introduce inoltre alla geometria analitica del piano e dello spazio, in ambito proiettivo, affine, euclideo. Vengono infine discusse le principali proprietà delle coniche. La trattazione si serve sia di strumenti analitici (coordinate, calcolo matriciale) che sintetici.

Lo scopo finale è rafforzare nello studente la capacità di astrazione, l'intuizione geometrica e l'abilità di calcolo, in vista degli sviluppi e delle applicazioni future.

Programma

Modulo: ELEMENTI DI GEOMETRIA
-------
Spazi affini ed euclidei. Rette, piani, iperpiani. Prodotto vettoriale e prodotto misto. Affinità e isometrie. Spazi proiettivi. Geometria del piano proiettivo. Coniche.


Modulo: ALGEBRA LINEARE
-------
Insiemi. Dimostrazioni dirette e indirette. Il principio di induzione. Numeri complessi. Matrici, operazioni con matrici e loro proprietà. Determinante e rango di una matrice. Matrice inversa. Sistemi di equazioni lineari. Metodo di eliminazione di Gauss. Spazi vettoriali, sottospazi, basi, dimensione. Applicazioni lineari. Autovalori e autovettori.

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
E.Gregorio, L.Salce Algebra Lineare Libreria Progetto Padova 2005
Candilera,Bertapelle Algebra lineare e primi elementi di Geometria Mc Graw Hill   9788838661891
M. Abate Geometria Mc Graw Hill   9788838607226
M. Abate, C. de Fabritiis Geometria analitica con elementi di algebra lineare McGraw Hill 2010 9788838665899

Modalità d'esame

Modulo: ELEMENTI DI GEOMETRIA
-------
L'esame consiste di
- una prova scritta unica su entrambi i moduli.
- una prova orale unica su entrambi i moduli.

Per potersi presentare all'orale è necessario aver superato la prova scritta.

A metà semestre si terrà una prima prova parziale scritta. Gli studenti che avranno superato la prova parziale avranno la possibilità (solo durante il primo appello di febbraio) di completare la prova scritta svolgendo soltanto la parte riguardante gli argomenti del secondo modulo. La data della prova parziale sarà comunicata a lezione e pubblicata su questo sito quanto prima.


Modulo: ALGEBRA LINEARE
-------
L'esame consiste di
- una prova scritta unica su entrambi i moduli.
- una prova orale unica su entrambi i moduli.

Per potersi presentare all'orale è necessario aver superato la prova scritta.

A metà semestre si terrà una prima prova parziale scritta. Gli studenti che avranno superato la prova parziale avranno la possibilità (solo durante il primo appello di febbraio) di completare la prova scritta svolgendo soltanto la parte riguardante gli argomenti del secondo modulo. La data della prova parziale sarà comunicata a lezione e pubblicata su questo sito quanto prima.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI