Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Matematica applicata - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2014/2015
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2015/2016
Modules | Credits | TAF | SSD |
---|
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Numerical analysis with laboratory (2014/2015)
Teaching code
4S02755
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/08 - NUMERICAL ANALYSIS
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
Module: Laboratory
-------
Implementation in Matlab and/or GNU Octave of the main algorithms of Numerical Analysis.
Module: Theory
-------
The basics of Numerical Analysis.
Program
Module: Theory
-------
* Analysis of errors: Overflow, Underflow, Cancellation
* Nonlinear equations: the Bisection Method, Fixed Point Iterations, Newton's Method, the Secant Method, Polynomials, Horner's Rule
* Linear Systems: Direct Methods, the LU Decomposition and Pivoting, Forward and Back Substitution; Iterative Methods, Jacobi Iteration, Gauss-Seidel and SOR. Iterative Improvement, the Gradient Method, Conjugate Gradient, over and under determined systems
* Eigenvalues and Eigenvectors: the Power Method, the Inverse Power Method, the QR algorithm
* Interpolation and Approximation fo Functions and Data: Polynomial interpolation, the Newton and Lagrange forms. Splines. Least Squares and the SVD.
* Numerical Integration and Derivatives: Simple formulas for the estimation of a derivative with relative error, numerical quadrature, interpolatory formulas, composite formulas, Gaussian Quadrature, Adaptive Quadrature.
* Numerical Solution of ODE's (time permitting)
Examination Methods
There will be an oral esam consisting of two parts. The first part will be a discussion of a selection of the assigned Laboratory exercises. The second part will be based on the theory presented during the lectures.
Students are asked to bring copies of the exercises and their solutions to the exam.
Attending the Laboratory and completing the assigned exercises are necessary conditions for passing the course.