Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2013 Jan 31, 2014
II semestre Mar 3, 2014 Jun 13, 2014
Exam sessions
Session From To
Sessione straordinaria Feb 3, 2014 Feb 28, 2014
Sessione estiva Jun 16, 2014 Jul 31, 2014
Sessione autunnale Sep 1, 2014 Sep 30, 2014
Degree sessions
Session From To
Sessione autunnale Oct 15, 2013 Oct 15, 2013
Sessione straordinaria Dec 9, 2013 Dec 9, 2013
Sessione invernale Mar 18, 2014 Mar 18, 2014
Sessione estiva Jul 21, 2014 Jul 21, 2014
Holidays
Period From To
Vacanze Natalizie Dec 22, 2013 Jan 6, 2014
Vacanze di Pasqua Apr 17, 2014 Apr 22, 2014
Festa del S. Patrono S. Zeno May 21, 2014 May 21, 2014
Vacanze Estive Aug 11, 2014 Aug 15, 2014

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Cuneo Alejandro Javier

symbol email alejando.cuneo@univr.it

Dai Pra Paolo

symbol email paolo.daipra@univr.it symbol phone-number +39 0458027093

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Palma Federico

symbol email federico.dipalma@univr.it symbol phone-number +39 045 8027074

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gaburro Elena

symbol email elena.gaburro@unitn.it, elenagaburro@gmail.com

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it symbol phone-number +39 045 8027031

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number 045 802 8241

Menon Martina

symbol email martina.menon@univr.it

Oliva Immacolata

symbol email immacolata.oliva@univr.it symbol phone-number +39 0458028768

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Residori Stefania

symbol email stefania.residori@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 049-8027932

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 8027979

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

activated in the A.Y. 2014/2015
ModulesCreditsTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2015/2016
ModulesCreditsTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-

2° Year activated in the A.Y. 2014/2015

ModulesCreditsTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06

3° Year activated in the A.Y. 2015/2016

ModulesCreditsTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Ulteriori conoscenze
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02755

Credits

12

Coordinatore

Leonard Peter Bos

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

The teaching is organized as follows:

Teoria

Credits

9

Period

I sem.

Academic staff

Leonard Peter Bos

Laboratorio

Credits

3

Period

I sem.

Academic staff

Elena Gaburro

Learning outcomes

Module: Laboratory
-------

Implementation in Matlab and/or GNU Octave of the main algorithms of Numerical Analysis.

Module: Theory
-------

The basics of Numerical Analysis.

Program

Module: Theory
-------

* Analysis of errors: Overflow, Underflow, Cancellation
* Nonlinear equations: the Bisection Method, Fixed Point Iterations, Newton's Method, the Secant Method, Polynomials, Horner's Rule
* Linear Systems: Direct Methods, the LU Decomposition and Pivoting, Forward and Back Substitution; Iterative Methods, Jacobi Iteration, Gauss-Seidel and SOR. Iterative Improvement, the Gradient Method, Conjugate Gradient, over and under determined systems
* Eigenvalues and Eigenvectors: the Power Method, the Inverse Power Method, the QR algorithm
* Interpolation and Approximation fo Functions and Data: Polynomial interpolation, the Newton and Lagrange forms. Splines. Least Squares and the SVD.
* Numerical Integration and Derivatives: Simple formulas for the estimation of a derivative with relative error, numerical quadrature, interpolatory formulas, composite formulas, Gaussian Quadrature, Adaptive Quadrature.
* Numerical Solution of ODE's (time permitting)

Examination Methods

There will be an oral esam consisting of two parts. The first part will be a discussion of a selection of the assigned Laboratory exercises. The second part will be based on the theory presented during the lectures.

Students are asked to bring copies of the exercises and their solutions to the exam.

Attending the Laboratory and completing the assigned exercises are necessary conditions for passing the course.

???AdattamentoProvaEsameDSA???

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attachments

Title Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources