Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2013 Jan 31, 2014
II semestre Mar 3, 2014 Jun 13, 2014
Exam sessions
Session From To
Sessione straordinaria Feb 3, 2014 Feb 28, 2014
Sessione estiva Jun 16, 2014 Jul 31, 2014
Sessione autunnale Sep 1, 2014 Sep 30, 2014
Degree sessions
Session From To
Sessione autunnale Oct 15, 2013 Oct 15, 2013
Sessione straordinaria Dec 9, 2013 Dec 9, 2013
Sessione invernale Mar 18, 2014 Mar 18, 2014
Sessione estiva Jul 21, 2014 Jul 21, 2014
Holidays
Period From To
Vacanze Natalizie Dec 22, 2013 Jan 6, 2014
Vacanze di Pasqua Apr 17, 2014 Apr 22, 2014
Festa del S. Patrono S. Zeno May 21, 2014 May 21, 2014
Vacanze Estive Aug 11, 2014 Aug 15, 2014

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D G M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 0458027935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Cuneo Alejandro Javier

symbol email alejando.cuneo@univr.it

Dai Pra Paolo

symbol email paolo.daipra@univr.it symbol phone-number +39 0458027093

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Palma Federico

symbol email federico.dipalma@univr.it symbol phone-number +39 045 8027074

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Maggian Valeria

symbol email valeria.maggian@unimib.it

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 0458027978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number +390458028241

Menon Martina

symbol email martina.menon@univr.it

Oliva Immacolata

symbol email immacolata.oliva@univr.it symbol phone-number +39 0458028768

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986
Foto,  January 27, 2015

Residori Stefania

symbol email stefania.residori@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 045-8027976

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 8027979

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2014/2015

ModulesCreditsTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06

3° Year  activated in the A.Y. 2015/2016

ModulesCreditsTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-
activated in the A.Y. 2014/2015
ModulesCreditsTAFSSD
6
A
MAT/02
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2015/2016
ModulesCreditsTAFSSD
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Ulteriori conoscenze
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02753

Credits

6

Coordinator

Luca Di Persio

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

The teaching is organized as follows:

Teoria

Credits

5

Period

II sem.

Academic staff

Luca Di Persio

Esercitazioni

Credits

1

Period

II sem.

Academic staff

Immacolata Oliva

Learning outcomes

The course aims at introducing the Probability theory fundamentals in the more general framework of the Lebesgue measure theory. Particular attention is given to the analytical aspects of the axiomatic basis of Kolmogorov approach to modern Probability, e.g. the construction of general probability spaces, the definition of algebra, sigma-algebra, Borel sets, measurable functions, push-forward measures, etc.

The course is basically divided into two parts devoted to the definition and study of discrete, resp. continuous, random variables (r.v.).

The introduction to the fundamental concepts of the modern theory of probability is classical and based on the elements of combinatorics, the laws of set theory and on the propositional calculus fundamentals.


The approach to r.v. in the continuum is first developed in a strictly probabilistic framework, with references to some basic analytical aspects such as those of integral calculus (integration in R^n, Fubini's theorem, dominated convergence, etc.), the convolution of functions, Laplace and Fourier transforms, etc.

In a second step the probabilistic aspects are reviewed in the context of the theory of measure, especially concerning theorems of convergence for sequences of r.v., also including the central limit theorem.

During the entire course, lessons are always characterized by the presentation of examples and relevant problems. Additionally, the student are continously requested to solve exercises, of different difficulty, which are proposed by the teacher, as weel as by the tutors.

Program

Fundamentals of Probability with respect to the axiomatic approach à la Kolmogorov

Independent/incompatible events

Rudiments of combinatorics (eg, combinations, permutations)

Uniform probability spaces

Conditional probability

Experiments with repeated independent trials

Probabilistic definition of random variable (rv)

Discrete random variables with values ​​in R^n
o distribution function
o density function (discrete)
o Joint laws (discrete), marginals and conditional independence
o Examples: Bernoulli, binomial, geometric, Poisson, etc.
o Mean, variance and covariance operators
o Index of correlation
o Moments of a rv
o Generating Functions

Poisson approximation to the Binomial

Čebyšëv (Чебышёв) Inequality

Law of large numbers ( weak and strong formulation )

Continuous random variables with values ​​in R^n
o Absolutely continuous rv
o Density Function (continuous)
o Joint (continuous) laws, marginals and conditional independence
o Examples: uniform, exponential, Gaussian, Gamma, etc.
o Mean, variance, covariance operators
o Normal laws
o Transformations of rv in R^n
o Conditional expectation (as a rv)
o Characteristic functions
o Moments of a rv

Convergence
o rv theory in the measure theory framework
o various types of convergence for sequences of rv
o central limit theorem and the Gaussian approximation

Examination Methods

Written exam

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 29/07/21
File pdf 2. How to write a thesis pdf, it, 31 KB, 29/07/21
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery Various topics
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives Various topics
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
 


Career management


Student login and resources


Erasmus+ and other experiences abroad


Commissione tutor

La commissione ha il compito di guidare le studentesse e gli studenti durante l'intero percorso di studi, di orientarli nella scelta dei percorsi formativi, di renderli attivamente partecipi del processo formativo e di contribuire al superamento di eventuali difficoltà individuali.

E' composta dai proff. Sisto Baldo, Marco Caliari, Francesca Mantese, Giandomenico Orlandi e Nicola Sansonetto