Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2014/2015

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 1, 2014 Jan 30, 2015
II sem. Mar 2, 2015 Jun 12, 2015
Exam sessions
Session From To
Sessione straordinaria appelli d'esame Feb 2, 2015 Feb 27, 2015
Sessione estiva appelli d'esame Jun 15, 2015 Jul 31, 2015
Sessione autunnale appelli d'esame Sep 1, 2015 Sep 30, 2015
Degree sessions
Session From To
Sessione autunnale appello di laurea 2014 Nov 27, 2014 Nov 27, 2014
Sessione invernale appello di laurea 2015 Mar 17, 2015 Mar 17, 2015
Sessione estiva appello di laurea 2015 Jul 21, 2015 Jul 21, 2015
Sessione II autunnale appello di laurea 2015 Oct 12, 2015 Oct 12, 2015
Sessione autunnale appello di laurea 2015 Nov 26, 2015 Nov 26, 2015
Sessione invernale appello di laurea 2016 Mar 15, 2016 Mar 15, 2016
Holidays
Period From To
Vacanze di Natale Dec 22, 2014 Jan 6, 2015
Vacanze di Pasqua Apr 2, 2015 Apr 7, 2015
Ricorrenza del Santo Patrono May 21, 2015 May 21, 2015
Vacanze estive Aug 10, 2015 Aug 16, 2015

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D M O R S Z

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Menon Martina

martina.menon@univr.it 045 802 8420

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Zampieri Gaetano

gaetano.zampieri@univr.it +39 045 8027979

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
B
(MAT/06)
Uno tra i seguenti insegnamenti
6
C
(SECS-P/01)
6
C
(FIS/01)
Uno tra i seguenti insegnamenti
6
C
(SECS-P/01)
ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
12
C
(SECS-S/06)
6
C
(MAT/07)
Prova finale
6
E
(-)

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
B
(MAT/06)
Uno tra i seguenti insegnamenti
6
C
(SECS-P/01)
6
C
(FIS/01)
Uno tra i seguenti insegnamenti
6
C
(SECS-P/01)

3° Year

ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
12
C
(SECS-S/06)
6
C
(MAT/07)
Prova finale
6
E
(-)
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Altre attività formative
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S02753

Credits

6

Coordinatore

Luca Di Persio

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

Language

Italian

The teaching is organized as follows:

Teoria

Credits

5

Period

II sem.

Academic staff

Luca Di Persio

Esercitazioni

Credits

1

Period

II sem.

Academic staff

Immacolata Oliva

???OrarioLezioni???

Learning outcomes

The course aims at introducing the Probability theory fundamentals in the more general framework of the Lebesgue measure theory. Particular attention is given to the analytical aspects of the axiomatic basis of Kolmogorov approach to modern Probability, e.g. the construction of general probability spaces, the definition of algebra, sigma-algebra, Borel sets, measurable functions, push-forward measures, etc.

The course is basically divided into two parts devoted to the definition and study of discrete, resp. continuous, random variables (r.v.).

The introduction to the fundamental concepts of the modern theory of probability is classical and based on the elements of combinatorics, the laws of set theory and on the propositional calculus fundamentals.


The approach to r.v. in the continuum is first developed in a strictly probabilistic framework, with references to some basic analytical aspects such as those of integral calculus (integration in R^n, Fubini's theorem, dominated convergence, etc.), the convolution of functions, Laplace and Fourier transforms, etc.

In a second step the probabilistic aspects are reviewed in the context of the theory of measure, especially concerning theorems of convergence for sequences of r.v., also including the central limit theorem.

During the entire course, lessons are always characterized by the presentation of examples and relevant problems. Additionally, the student are continously requested to solve exercises, of different difficulty, which are proposed by the teacher, as weel as by the tutors.

Program

Fundamentals of Probability with respect to the axiomatic approach à la Kolmogorov

Independent/incompatible events

Rudiments of combinatorics (eg, combinations, permutations)

Uniform probability spaces

Conditional probability

Experiments with repeated independent trials

Probabilistic definition of random variable (rv)

Discrete random variables with values ​​in R^n
o distribution function
o density function (discrete)
o Joint laws (discrete), marginals and conditional independence
o Examples: Bernoulli, binomial, geometric, Poisson, etc.
o Mean, variance and covariance operators
o Index of correlation
o Moments of a rv
o Generating Functions

Poisson approximation to the Binomial

Čebyšëv (Чебышёв) Inequality

Law of large numbers ( weak and strong formulation )

Continuous random variables with values ​​in R^n
o Absolutely continuous rv
o Density Function (continuous)
o Joint (continuous) laws, marginals and conditional independence
o Examples: uniform, exponential, Gaussian, Gamma, etc.
o Mean, variance, covariance operators
o Normal laws
o Transformations of rv in R^n
o Conditional expectation (as a rv)
o Characteristic functions
o Moments of a rv

Convergence
o rv theory in the measure theory framework
o various types of convergence for sequences of rv
o central limit theorem and the Gaussian approximation

Examination Methods

Written exam

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.