Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
I semestre | 1-ott-2019 | 31-gen-2020 |
II semestre | 2-mar-2020 | 12-giu-2020 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 3-feb-2020 | 28-feb-2020 |
Sessione estiva d'esame | 15-giu-2020 | 31-lug-2020 |
Sessione autunnale d'esame | 1-set-2020 | 30-set-2020 |
Sessione | Dal | Al |
---|---|---|
Sessione estiva di laurea | 22-lug-2020 | 22-lug-2020 |
Sessione autunnale di laurea | 14-ott-2020 | 14-ott-2020 |
Sessione autunnale di laurea solo triennale | 10-dic-2020 | 10-dic-2020 |
Sessione invernale di laurea | 16-mar-2021 | 16-mar-2021 |
Periodo | Dal | Al |
---|---|---|
Festa di Ognissanti | 1-nov-2019 | 1-nov-2019 |
Festa dell'Immacolata | 8-dic-2019 | 8-dic-2019 |
Vacanze di Natale | 23-dic-2019 | 6-gen-2020 |
Vacanze di Pasqua | 10-apr-2020 | 14-apr-2020 |
Festa della Liberazione | 25-apr-2020 | 25-apr-2020 |
Festa del lavoro | 1-mag-2020 | 1-mag-2020 |
Festa del Santo Patrono | 21-mag-2020 | 21-mag-2020 |
Festa della Repubblica | 2-giu-2020 | 2-giu-2020 |
Vacanze estive | 10-ago-2020 | 23-ago-2020 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Aielli Gian Piero
Imperio Michele
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2020/2021
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2021/2022
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Analisi matematica II (2020/2021)
Codice insegnamento
4S00031
Docenti
Coordinatore
Crediti
12
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/05 - ANALISI MATEMATICA
Periodo
I semestre dal 1-ott-2020 al 29-gen-2021.
Obiettivi formativi
Nel corso vengono sviluppati i concetti e le tecniche del calcolo differenziale ed integrale per funzioni reali di più variabili reali, gli sviluppi in serie di funzioni, la teoria delle equazioni differenziali ordinarie e vengono introdotte la misura e l'integrale di Lebesgue. Accanto agli aspetti teorici si porrà l’accento sulle applicazioni, approfondendo gli esempi notevoli per ogni capitolo. Al termine dell'insegnamento gli studenti e le studentesse dovranno essere in grado di dimostrare un'adeguata capacità di sintesi e di astrazione, essere in grado di riconoscere e produrre dimostrazioni rigorose ed essere in grado di formalizzare e risolvere problemi di moderata difficoltà, limitatamente al syllabus dell'insegnamento.
Programma
Tutte le ore dell'insegnamento saranno disponibili online.
Inoltre, una parte delle lezioni/tutte le lezioni (si veda l'orario) saranno tenute anche in aula.
(i) Calcolo in più variabili. Intorni in più variabili, continuità per funzioni di più variabili, derivate direzionali, e differenziale di funzioni in più variabili, teorema del differenziale totale, gradiente di funzioni scalari, matrice Jacobiana per funzioni a valori vettoriali, curve di livello di funzioni scalari. Superfici parametriche, vettori tangenti e normale, trasformazioni di coordinate. Derivate e differenziali di ordine superiore, matrice Hessiana, teorema di Schwarz, sviluppo di Taylor.
(ii) Problemi di ottimizzazione per funzioni di più variabili. Punti critici, ottimizzazione libera, studio della matrice Hessiana per la determinazione di massimi e minimi liberi relativi. Ottimizzazione vincolata, teorema di Weierstrass, parametrizzazione del vincolo, teorema dei moltiplicatori di Lagrange, teorema di Dini, teorema della funzione inversa, lemma delle contrazioni.
(iii) Integrali multipli per funzioni continue definite su prodotti di rettangoli. Teorema di Fubini e Tonelli. Baricentri, momenti di inerzia, formula del cambiamento di variabili. Integrali superficiali di prima specie, formula dell'area. Integrale curvilineo di prima specie.
(iv) Integrale curvilineo di seconda specie, campi vettoriali conservativi, potenziale scalare, rotore di un campo vettoriale, introduzione alle forme differenziali, forme chiuse, forme esatte, lemma di Poincaré, formule di Gauss-Green nel piano.
(v) Integrale superficiale di seconda specie, flusso, teorema di Stokes, teorema della divergenza, 2-forme differenziali, differenziale esterno, teorema di Stokes e della divergenza con le forme differenziali.
(vi) Spazi metrici, proprietà assiomatiche della funzione distanza, geodetiche, successioni di Cauchy. Spazi normati, distanza indotta dalla norma. Lo spazio delle funzioni continue definite su un intervallo compatto. Successioni di funzioni, convergenza uniforme, serie di funzioni, convergenza totale, teorema di derivazione e di integrazione per serie.
(vii) Teoria della misura secondo Lebesgue. Misura di Lebesgue: motivazione, ripasso sulla misura di Peano Jordan, misura esterna di Lebesgue. Prime proprietà della misura esterna di Lebesgue. Misure esterne astratte. Insiemi misurabili secondo Caratheodory. Proprietà della misura sugli insiemi misurabili. Regolarità della misura di Lebesgue. Esistenza di insiemi non misurabili secondo Lebesgue. Funzioni misurabili. Funzioni misurabili e loro stabilità. Funzioni semplici e loro integrale. Approssimazione di funzioni misurabili non negative con funzioni semplici. Integrale di Lebesgue di funzioni misurabili non negative. Teorema di Beppo Levi e conseguenze. Lemma di Fatou e teorema della convergenza dominata di Lebesgue. Qualche conseguenza dei teoremi di convergenza integrale. Proprietà vere “quasi ovunque”. Confronto con l'integrale di Riemann. Lo spazio L^2 delle funzioni a quadrato sommabile.
(viii) Equazioni differenziali. Richiami su spazi metrici e spazi normati, teorema della convergenza totale per le serie di funzioni, lemma delle contrazioni. Equazioni differenziali totali. Equazioni differenziali ordinarie: forma integrale del problema di Cauchy. Teorema di Cauchy-Lipschitz. Prolungabilità delle soluzioni locali e soluzioni massimali. Esistenza e unicità per i sistemi di equazioni ordinarie. Un risultato di esistenza globale. Equazioni lineari di ordine n: esistenza e unicità globale per il problema di Cauchy. Equazioni lineari omogenee: struttura dell'insieme delle soluzioni. Equazioni lineari complete: struttura dell'insieme delle soluzioni. Metodo della variazione delle costanti per equazioni di ordine n. Esponenziale complesso. Soluzione generale di equazioni differenziali lineari omogenee a coefficienti costanti, sistemi a coefficienti costanti. Metodo degli annichilatori (o dei coefficienti indeterminati).
(ix) Serie di Fourier di una funzione periodica: definizione e considerazioni euristiche.
Relazioni di ortogonalità per seni e coseni.
Alcuni risultati di convergenza (in L^2, puntuale, uniforme). Applicazioni: risoluzione per separazione di variabili dell'equazione della corda vibrante.
Al di fuori del monte ore dell'insegnamento, che comprende sia lezioni frontali che esercitazioni in aula, sono offerte attività di tutorato.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
V. Barutello, M. Conti, D.L. Ferrario, S. Terracini, G. Verzini | Analisi matematica. Dal calcolo all'analisi Vol. 2 | Apogeo | 2007 | 88-503-242 | |
Robert A. Adams, Christofer Essex | Calcolo Differenziale 2 - Funzioni di più variabili (Edizione 5) | AMBROSIANA | 2014 | 978-8808-18468-9 | |
Kenneth R. Davidson, Allan P. Donsig | Real Analysis and applications: theory in practice | Springer | 2010 | 978-0443042089 |
Modalità d'esame
L'esame finale consiste in una prova scritta comprendente una serie di
esercizi da risolvere relativi al programma svolto, seguita, in caso di esito positivo, da una prova
orale principalmente sulla teoria.
La prova scritta, valutata in trentesimi, potrà essere sostituita da due prove in itinere, la prima a inizio dicembre e la seconda coincidente con il primo appello scritto utile di febbraio: in questo caso, il voto dello scritto sarà dato dalla media aritmetica dei due voti scritti. Questa parte dell'esame ha lo scopo di verificare la capacità di risolvere problemi sul programma dell'insegnamento, il possesso di un'adeguata capacità di analisi, sintesi ed astrazione, a partire da richieste formulate in linguaggio naturale o in linguaggio specifico.
La prova orale ha principalmente lo scopo di verificare la capacità di riconoscere e produrre dimostrazioni rigorose e la capacità di analisi, sintesi ed astrazione.
Alla prova orale verrà attribuito un punteggio da -5 a +5 trentesimi, da sommare algebricamente al punteggio della prova scritta per ottenere il voto finale.
Sia prova scritta che prova orale verranno effettuate in modalità a distanza.
Tipologia di Attività formativa D e F
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° 3° | Linguaggio programmazione Python | D |
Maurizio Boscaini
(Coordinatore)
|
1° 2° 3° | SageMath | F |
Zsuzsanna Liptak
(Coordinatore)
|
1° 2° 3° | Storia della fisica moderna 2 | D |
Francesca Monti
(Coordinatore)
|
1° 2° 3° | Storia e didattica della geologia | D |
Guido Gonzato
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° 3° | Linguaggio Programmazione C | D |
Sara Migliorini
(Coordinatore)
|
1° 2° 3° | Linguaggio Programmazione C++ | D |
Federico Busato
(Coordinatore)
|
1° 2° 3° | Linguaggio Programmazione LaTeX | D |
Enrico Gregorio
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° 3° | Corso Europrogettazione | D | Non ancora assegnato |
1° 2° 3° | Corso online ARPM bootcamp | F | Non ancora assegnato |
1° 2° 3° | ECMI modelling week | F | Non ancora assegnato |
1° 2° 3° | ESA Summer of code in space (SOCIS) | F | Non ancora assegnato |
1° 2° 3° | Google summer of code (GSOC) | F | Non ancora assegnato |
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Prova Finale
1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
Documenti
Titolo | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |
2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Argomenti vari |
Tesi assegnate a studenti di matematica | Argomenti vari |
Modalità e sedi di frequenza
Come riportato nel regolamento didattico, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.
Gestione carriere
Area riservata studenti
Erasmus+ e altre esperienze all’estero
Orientamento in itinere per studenti e studentesse
La commissione ha il compito di guidare le studentesse e gli studenti durante l'intero percorso di studi, di orientarli nella scelta dei percorsi formativi, di renderli attivamente partecipi del processo formativo e di contribuire al superamento di eventuali difficoltà individuali.
E' composta dai proff. Lidia Angeleri, Sisto Baldo, Marco Caliari, Paolo dai Pra, Francesca Mantese e Nicola Sansonetto.
Per scrivere ai docenti: nome.cognome@univr.it