Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
I semestre | 1-ott-2018 | 31-gen-2019 |
II semestre | 4-mar-2019 | 14-giu-2019 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 1-feb-2019 | 28-feb-2019 |
Sessione estiva d'esame | 17-giu-2019 | 31-lug-2019 |
Sessione autunnale d'esame | 2-set-2019 | 30-set-2019 |
Sessione | Dal | Al |
---|---|---|
Sessione di laurea estiva | 22-lug-2019 | 22-lug-2019 |
Sessione di laurea autunnale | 15-ott-2019 | 15-ott-2019 |
Sessione di laurea autunnale straordinaria | 21-nov-2019 | 21-nov-2019 |
Sessione di laurea invernale | 19-mar-2020 | 19-mar-2020 |
Periodo | Dal | Al |
---|---|---|
Sospensione attività didattica | 2-nov-2018 | 3-nov-2018 |
Vacanze di Natale | 24-dic-2018 | 6-gen-2019 |
Vacanze di Pasqua | 19-apr-2019 | 28-apr-2019 |
Vacanze estive | 5-ago-2019 | 18-ago-2019 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Magazzini Laura
laura.magazzini@univr.it 045 8028525Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2019/2020
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2020/2021
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Sistemi dinamici (2019/2020)
Codice insegnamento
4S00244
Crediti
6
Coordinatore
Non ancora assegnato
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/05 - ANALISI MATEMATICA
L'insegnamento è organizzato come segue:
Teoria
Crediti
5
Periodo
II semestre
Docenti
Nicola Sansonetto
Esercitazioni
Crediti
1
Periodo
II semestre
Docenti
Giacomo Canevari
Obiettivi formativi
Il corso si propone di introdurre la teoria e alcune applicazioni dei sistemi dinamici continui e discreti, che descrivono l’evoluzione temporale di variabili quantitative.
Al termine del corso lo studente sarà in grado di investigare la stabilità e la relativa natura di un equilibrio, l’analisi qualitativa di un sistema di equazioni differenziali ordinarie e il ritratto in fase di un sistema dinamico in dimensione 1 e 2.
Lo studente sarà altresì in grado di investigare la presenza di cicli limite e la loro natura e di analizzare le applicazioni di base dei sistemi dinamici alla dinamica delle popolazioni, alla meccanica e ai modelli di traffico. Infine sarà in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di sistemi dinamici e applicazioni.
Programma
Modulo 1. Complementi sulle equazioni differenziali ordinarie.
Ripasso su equazioni differenziali del primo ordine lineari, equazioni differenziali del secondo ordine a coefficienti costanti, metodo della variazione delle costanti. Teorema di esistenza e unicita`. Teoria qualitativa delle Equazioni Differenziali Ordinarie: soluzioni massimali, lemmi di Gronwall e del confronto. Soluzione esplicita di equazioni particolari: a variabili separabili, di Riccati, totali. Sistemi lineari.
Modulo 2. ODE come campi vettoriali, analisi qualitativa dello spazio delle fasi.
Orbite e spazio delle fasi. Equilibri, ritratto in fase di dimensione 1, equazioni del secondo ordine e relativi equilibri. Linearizzazione attorno ad un equilibrio, soluzioni periodiche.
Modulo 3. Sistemi lineari.
Sistemi lineari in R2, matrice diagonalizzabile, autovalori reali e non reali. Il caso nilpotente. Diagramma di biforcazione in R2. Sistemi lineari in Rn, sottospazi stabile, instabile e centrale. Linearizzazione attorno ai punti di equilibrio.
Modulo4. Flusso e coniugazione di flussi.
Dipendenza dai dati iniziali, flusso di un campo vettoriale. Dipendenza dai parametri. Equazioni differenziali dipendenti dal tempo. Coniugazione di flussi e cambi di coordinate, push–forward e pull-back. Cambi di coordinate dipendenti dal tempo, riscalamenti di campi vettoriali e riparametrizzazioni del tempo. Teorema di rettificazione locale.
Modulo 5. Integrali primi.
Insiemi invarianti, integrali primi e la derivata di Lie. Foliazioni invarianti e abbassamento dell’ordine. Integrali primi e attrattivita` degli equilibri.
Modulo 6. Equazione di Newton 1-dimensionale.
Ritratto in fase nel caso conservativo. Linearizzazione. Abbassamento dell’ordine e legge oraria. Sistemi con dissipazione.
Modulo 7. Stabilita` degli equilibri. Stabilita` alla Lyapunov, il metodo delle funzioni di Lyapunov e il metodo spettrale.
Applicazioni e laboratorio numerico.
Modulo 8. Biforcazioni ed applicazioni.
Nozione di biforcazione in una dimensione, biforcazione degli equilibri. Applicazioni.
Modulo 9. Introduzione al calcolo delle variazioni 1-dimensionale.
Funzioni di Lagrange e funzionale d’azione. Differenziale di Gateaux e stazionarizzazione di un funzionale. Equazioni di Euler-Lagrange. Funzione di Jacobi e invarianza per trasformazioni puntuali estese. Problema geodetico e problema meccanico.
Modulo 10. Meccanica Hamiltoniana.
Funzione di Hamilton, equazioni canoniche, campi vettoriali Hamiltoniani e dinamica Hamiltoniana. Trasformazione di Legendre. Parentesi di Poisson, algebra di Poisson e integrali primi. Trasformazioni canoniche. Condizioni di canonicita`, condizione di Lie e funzioni generatrici. Equazione di Hamilton-Jacobi e cenni ai sistemi integrabili. Geometria dello spazio delle fasi: teorema del ritorno e teorema di Liouville.
Bibliografia
Attività | Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|---|
Teoria | G. Benettin | Appunti per il corso di Fisica Matematica | 2017 | |||
Teoria | G. Benettin | Appunti per il corso di Meccanica Analitica | 2018 | |||
Teoria | F. Fasso` | Primo sguardo ai sistemi dinamici | CLEUP | 2016 | ||
Teoria | G. Benettin | Una passeggiata tra i Sistemi Dinamici | 2012 |
Modalità d'esame
Una prova scritta di esercizi: ritratto di fase in 2D per un sistema dinamico non-lineare; calcolo di traiettorie e stabilità per un sistema in tempo discreto, ritratto di fase in 2D per un sistema dinamico non- lineare; calcolo di traiettorie e stabilità per un sistema in tempo discreto; studio della stabilità di un sistema.
La prova scritta verifica i seguenti obbiettivi formativi:
- aver adeguate capacità di analisi;
- avere adeguate competenze computazionali;
- essere in grado di formalizzare matematicamente problemi formulati nel linguaggio naturale;
- avere la capacità di costruire e sviluppare modelli matematici per le scienze fisiche e naturali
Una prova orale con 2-3 domande di teoria. La prova è obbligatoria
e va sostenuta all’interno della sessione in cui viene superata la prova scritta, pena la decadenza della
validita` della prova scritta.
La prova orale verifica i seguenti obbiettivi formativi:
- essere in grado di produrre e riconoscere dimostrazioni rigorose.
Tipologia di Attività formativa D e F
Insegnamenti non ancora inseriti
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Prova Finale
1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
Documenti
Titolo | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |
2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Argomenti vari |
Tesi assegnate a studenti di matematica | Argomenti vari |
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery | Argomenti vari |
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives | Argomenti vari |
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization | Argomenti vari |
Modalità e sedi di frequenza
Come riportato nel regolamento didattico, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 22.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.
Gestione carriere
Area riservata studenti
Erasmus+ e altre esperienze all’estero
Orientamento in itinere per studenti e studentesse
La commissione ha il compito di guidare le studentesse e gli studenti durante l'intero percorso di studi, di orientarli nella scelta dei percorsi formativi, di renderli attivamente partecipi del processo formativo e di contribuire al superamento di eventuali difficoltà individuali.
E' composta dai proff. Sisto Baldo, Marco Caliari, Francesca Mantese, Giandomenico Orlandi e Nicola Sansonetto