Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione Estiva Jul 19, 2021 Jul 19, 2021
Sessione Autunnale Oct 19, 2021 Oct 19, 2021
Sessione Autunnale Dicembre Dec 7, 2021 Dec 7, 2021
Sessione Invernale Mar 17, 2022 Mar 17, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G M N O P Q R S T V

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Baruffi Maria Caterina

mariacaterina.baruffi@univr.it

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072

Bonnici Vincenzo

vincenzo.bonnici@univr.it +39 045 802 7045

Boscaini Maurizio

maurizio.boscaini@univr.it

Capaldi Stefano

stefano.capaldi@univr.it +39 045 802 7907

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Combi Carlo

carlo.combi@univr.it 045 802 7985

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Della Libera Chiara

chiara.dellalibera@univr.it +39 0458027219

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

daniele.dellorco@univr.it +39 045 802 7637

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Drago Nicola

nicola.drago@univr.it 045 802 7081

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Monti Francesca

francesca.monti@univr.it 045 802 7910

Nardon Chiara

chiara.nardon@univr.it

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Quaglia Davide

davide.quaglia@univr.it +39 045 802 7811

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Storti Silvia Francesca

silviafrancesca.storti@univr.it +39 045 802 7908

Tomazzoli Claudio

claudio.tomazzoli@univr.it

Trabetti Elisabetta

elisabetta.trabetti@univr.it 045/8027209

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
C
(BIO/13)
12
C
(CHIM/03 ,CHIM/06)
6
A
(FIS/01)
English B1 level
6
E
-
ModulesCreditsTAFSSD
12
B
(INF/01)
6
C
(BIO/18)
1 module among the following
6
C
(FIS/07)

1° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
C
(BIO/13)
12
C
(CHIM/03 ,CHIM/06)
6
A
(FIS/01)
English B1 level
6
E
-

2° Year

ModulesCreditsTAFSSD
12
B
(INF/01)
6
C
(BIO/18)
1 module among the following
6
C
(FIS/07)
Modules Credits TAF SSD
Between the years: 2°- 3°
Between the years: 2°- 3°
Other activities
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S003712

Credits

12

Coordinatore

Mariapina D'Onofrio

The teaching is organized as follows:

Elementi di chimica generale

Credits

6

Period

II semestre, I semestre

Academic staff

Chiara Nardon

Elementi di chimica organica

Credits

6

Period

II semestre, I semestre

Academic staff

Mariapina D'Onofrio

Learning outcomes

The aim of the course is to acquire the main concepts of General Chemistry and basics of Inorganic and Organic Chemistry. The course is divided into two modules: Elements of General Chemistry and Elements of Organic Chemistry, which are detailed below. Module Elements of General Chemistry: This module introduces the basics and foundations of Gen-eral Chemistry and Inorganic Chemistry. At the end of the course the students will be able to solve problems regarding the General Chemistry, showing good reasoning skills and ability in the connec-tion of different concepts. The course will also provide the students with basic know how necessary to attend other courses such as Organic Chemistry and Biochemistry. Module Elementsi of Organic Chemistry: This module presents the conceptual bases to provide the student with the basics of organic chemistry. Knowledge of organic compounds and their reactivity is the basis for dealing with advanced topics for the comprehension of biological and biomolecular phe-nomena. At the end of the course, the student will have to demonstrate the ability to deal with the structures and the chemical properties and typical reactions of the organic molecules and must be able to apply such knowledge to describe the reaction mechanisms. The basic concepts learned du-ring the course will provide students with the tools of molecular interpretation of the organization of biological systems.

Program

------------------------
MM: ELEMENTI DI CHIMICA GENERALE
------------------------
The course will be take place by three ways: in presence, in streaming and upon lecture recording. The support material (slides) will be vailable via the Moodle platform. Introduction. Chemical and physical properties of matter and their measurements. Elements, atoms and compounds. Nomenclature of inorganic compounds. Types of chemical reactions. Reaction stoichiometry. Ideal and real gases. Thermochemistry. Internal energy and enthalpy. Standard enthalpy of reaction and formation. Atomic structure. Atomic orbitals. Electronic configuration, Aufbau principle. Periodic properties: atomic and ionic radii, ionization energy, electron affinity, electronegativity. Elementary notions on the ionic bond. Ionic compounds. Covalent bond. Lewis formula. Resonance. Molecular geometry and polarity. Orbital hybridisation. Single and multiple bonds. Interparticle forces. Properties of liquids. Solutions. Binary liquid mixtures. Distillation. Properties of solids. Chemical kinetics. Arrhenius equation. Reaction mechanisms. Chemical equilibrium. Equilibrium constant. Acid-base equilibrium. Acid, base and salt solutions. Acid-base titration. Buffer solutions. Solubility equilibrium. Entropy. Spontaneous processes. Gibbs free energy. Standard free energy of reaction and formation. Electrochemical cells. Electrolysis. The course is made of 48 h of lectures.
------------------------
MM: ELEMENTI DI CHIMICA ORGANICA
------------------------
- Bond angles and carbon hybridisations, polarity of the molecules in relation to the electronegativity of the atoms of the molecule, the concept of resonance and different ways of representing the bonds, representation of the electron displacement in a reaction. - Acids and bases in organic chemistry: definitions according to Bronsted / Lowry and Lewis, how to predict the strength of an acid and the equilibrium position in an acid-base reaction, the relationship between molecular structure and acidity (resonance and relocation of the charge, inductive effect and electronegativity). - Saturated hydrocarbons: alkanes and cycloalkanes, nomenclature and structure, mention of combustion reaction and radical substitution, constitutional isomerism of alkanes, cis-trans isomers of cycloalcans, chair and boat conformations, equatorial and axial substitutions. - Unsaturated hydrocarbons: alkenes and alkynes, nomenclature, structure, characteristic reactions of alkenes: addition reactions and Markovnikov’s rule, regioselectivity, hydro-halogenation, hydration, halogenation, hydrogenation. - Chirality of the molecules: stereoisomers, enantiomers, diasteroisomers, optical activity and R / S configuration of a stereocentre, meso compounds and racemic mixtures, polarimeter and polarized light. - Alogenoalcans: nomenclature, structure, nucleophilic substitution and elimination reactions. Mechanisms SN1, SN2, E1, E2, stability of exiting groups, relative efficacy of nucleophiles, stability of carbocations, solvent effect, differences between intermediate and transition states, competition between nucleophilic substitution and elimination reactions, energy diagrams of a reaction. - Alcohols, phenols, ethers and thiols: structure, nomenclature and chemical properties, oxidation and dehydration reactions, secondary and tertiary primary alcohols, acidity comparisons. - Benzene and aromatic compounds: resonance and Huckel's rule, nomenclature and structure, aromatic molecules of biological interest. General overview of reactions (aromatic electrophilic substitution) - Aldehydes, ketones: nomenclature and structure, physical properties, reactivity, reduction and oxidation of aldehydes and ketones, nucleophilic addition, reaction with Grignard reagents, formation of emiacetals and acetals, formation of an immine from an aldehyde or ketone, keto–enol tautomerism, alpha-substitution reactions, acidity, condensation reactions. - Amine: nomenclature, basicity. - Carboxylic acids and derivatives: nomenclature, structure, properties and acidity, acyl nucleophilic substitution, Carboxylic acids derivatives reactivity, amide bond properties, thioester and acyl phosphate. - Carbohydrates: classification and configuration, mutarotation, reducing sugars, Fischer and Haworth projections, disaccharides and polysaccharides of biological interest. - Lipids: Classification and structure of fatty acids, phospholipids, prostaglandins, terpenoids and steroids. - Amino acids: structure, basic-acidity properties, isoelectric point determination, overview on the protein structural characteristics, polypeptide bond, secondary structure. - Nucleic Acids: DNA RNA, nucleosides and nucleotides, overview on DNA transcription and translation. - Software for bi and three-dimensional visualization of the structures of organic molecules, molecular representation systems. - Codes for molecules representation used in databases.

Examination Methods

------------------------
MM: ELEMENTI DI CHIMICA GENERALE
------------------------
The exam will take place through a written multiple-choice test. The student will address 18 theoretical questions (1 point each) concerning the entire Program. Other 4 questions (3 points each) will focus on the application of theoretical concepts through exercises. For each wrong answer -0.5 points and 0 points for canceled or not given answers. The final mark will be expressed in thirtieths. Students who achieve a score of 17 will be entitled to take an oral exam in order to reach the grade of 18. Students who achieve a score equal to or greater than 29/30 will be entitled to take an oral exam to evaluate the assignment of Honors. These rules apply for both attending and non-attending students.
------------------------
MM: ELEMENTI DI CHIMICA ORGANICA
------------------------
Written exam: 6 exercises, available time 1 and a half hours. The obtained grade will be averaged with the one obtained in the module of "General Chemistry Elements" The exam consists of a written verification of the level of knowledge acquired on organic chemistry. The student should be able to correctly represent the molecules using the conventions in use, recognize isomers, identify reactive groups, and describe in detail the reaction mechanisms. It is moreover verified the knowledge of molecule codes used in databases. The test consists of a written exam divided into six open-ended exercises (time available 90 minutes). The final grade is given by the sum of the scores obtained in the individual exercises. If the outcome of the written exam is ≥ 16/30 it is possible to scheduled the oral exam.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
McMurry Chimica organica PICCIN  
Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276
John McMurry Fondamenti di Chimica Organica (Edizione 3) Zanichelli   8808075397
L. G. Wade Jr. Fondamenti di Chimica Organica PICCIN 2014 978-88-299-2300-7
J. G. Smith Fondamenti di chimica organica, 3/e (Edizione 3) McGraw Hill 2018
Brown Poon Introduzione alla chimica organica (Edizione 5) EdiSES 2014 9788879598255

Type D and Type F activities

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
Matlab-Simulink programming D Bogdan Mihai Maris (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
Introduction to 3D printing D Franco Fummi (Coordinatore)
Python programming language D Vittoria Cozza (Coordinatore)
HW components design on FPGA D Franco Fummi (Coordinatore)
Rapid prototyping on Arduino D Franco Fummi (Coordinatore)
Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Rossana Capuani
The fashion lab (1 ECTS) D Maria Caterina Baruffi (Coordinatore)
LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

List of theses and work experience proposals

Stage Research area
Correlated mutations Various topics

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.