Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Informatica - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
3° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematical analysis 2 (2017/2018)
Teaching code
4S00031
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
Period
I sem. dal Oct 2, 2017 al Jan 31, 2018.
Learning outcomes
The course aims to introduce the fundamental notions of differential and integral calculus in more variables. Some ordinary differential equations will be studied.
At the end of the course students are expected to know the language and the notions introduced. Moreover they should be able to rigorously use such notions for the solution of the proposed exercises, explaining their answers with precise references to theoretical results dealt with during the course, if necessary.
Program
1) Ordinary differential equations (ODE). General integral of an ODE. Cauchy problems. Separable variable differential equations. First and second-order linear differential equations.
2) Differential calculus for functions of many variables. Graphs and level sets. Limits and continuity for functions of many variables. Topology in R^n. Partial derivatives. Unconstrained and constrained optimization.
3) Integral calculus in many variables: line integrals of a scalar field, double and triple integrals. Vector fields. Line integrals of a vector field.
4) Area of a surface and surface integrals.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
M. Bramanti, C. D. Pagani, S. Salsa | Analisi Matematica 2 | Zanichelli | 2009 | 978-88-08-12281-0 |
Examination Methods
The final exam is written and must be completed in 3 hours. Oral exams will not take place. The exam paper consists of open-ended exercises. The total of the marks of the exam paper is 32. Any topic dealt with during the lectures can be examined. Students are not allowed to use books, notes or electronic devices during the exam. The mark of any exercise will take into consideration not only the correctness of the results, but also the method adopted for the solution and the precise references to theoretical results (e.g. theorems) taught during the lectures. The pass mark for the exam is 18.
A midterm exam will take place during the midterm week, according to the Computer Science Department's calendar. Students who take part to the midterm (whose total of the marks is 16) can decide to solve only the second part of the exam in only one of the two dates during the exam session of February 2018. The total of the marks of the second part is 16. The final mark is given by the sum of the marks of the midterm and the second part.