Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione Estiva Jul 15, 2020 Jul 15, 2020
Sessione Autunnale Oct 16, 2020 Oct 16, 2020
Sessione Autunnale Dicembre Dec 11, 2020 Dec 11, 2020
Sessione Invernale Mar 17, 2021 Mar 17, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F G M O P Q S

Baruffi Maria Caterina

symbol email mariacaterina.baruffi@univr.it

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Boscolo Galazzo Ilaria

symbol email ilaria.boscologalazzo@univr.it symbol phone-number +39 045 8127804

Burato Alberto

symbol email alberto.burato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Capuani Rossana

symbol email rossana.capuani@univr.it

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Centomo Stefano

symbol email stefano.centomo@univr.it symbol phone-number 045 802(7048)

Cipriani Alessio

symbol email alessio.cipriani@univr.it symbol phone-number +39 045 802 7838

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +39 045 802 7985

Cozza Vittoria

symbol email vittoria.cozza@univr.it

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number +39 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dall'Alba Diego

symbol email diego.dallalba@univr.it symbol phone-number +39 045 802 7074

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Demrozi Florenc

symbol email florenc.demrozi@univr.it symbol phone-number +39 045 802 7048

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Geretti Luca

symbol email luca.geretti@univr.it symbol phone-number +39 045 802 7850

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number +39 045 802 7922

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +39 045 802 7089

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +39 045 802 7852

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number +39 045 802 7997

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 802 7940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7850

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2020/2021

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year  activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module to be chosen among the following
6
C
INF/01
6
C
ING-INF/04
Tirocinio
6
F
-
Prova finale
6
E
-
activated in the A.Y. 2020/2021
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module to be chosen among the following
6
C
INF/01
6
C
ING-INF/04
Tirocinio
6
F
-
Prova finale
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00019

Credits

12

Language

Italian

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

The teaching is organized as follows:

Teoria

Credits

10

Period

I semestre, II semestre

Laboratorio [Laboratorio 1]

Credits

2

Period

I semestre, II semestre

Academic staff

Florenc Demrozi

Laboratorio [Laboratorio 2]

Credits

2

Period

I semestre, II semestre

Academic staff

Alberto Castellini

Learning outcomes

The course aims to provide an introduction to the principles and design of operating systems, with particular regard to the concepts related to the software architectures of an operating system, the management and synchronization of processes and the management of the resources of the system. At the end of the course, the student will have acquired knowledge and skills related to the internal organization, operation and services of an operating system. In particular, the student will have learned: - the main functionalities of an operating system with respect to users and application programs; - the strategies adopted by an operating system to manage the resources of a computer; - the techniques used to implement the different components of an operating system. Furthermore, the student will be able to apply the acquired knowledge and will have adequate comprehension skills for: - develop programs with the awareness of how the operating system manages the resulting processes; - develop applications that use the primitives (system calls) provided by the operating system; - develop and modify components of an operating system. Finally, the student will be able to: - autonomously evaluate the advantages and disadvantages of different design choices within the services offered by an operating system; - carry out a laboratory project and present the relative results motivating the choices with language appropriateness; - develop the necessary skills to continue the study related to operating systems, addressing advanced issues related to the scenarios of distributed, real time and embedded systems.

Program

Theory
----------
* Introduction: Evolution and role of the operating system. Architectural concepts. Organization and functionality of an operating system.

* Process Management: Processes. Process status. Context switch. Process creation and termination. Thread. User-level threads and kernel-level threads. Process cooperation and communication: shared memory, messagges. Direct and indirect communication.

* Scheduling: CPU and I/O burst model. Long term, short term and medium term scheduling. Preemption. Scheduling criteria. Scheduling algorithm: FCFS, SJF, priority-based, RR, HRRN, multiple queues with and without feedback. Algorithm evaluation: deterministic and probabilistic models, simulation.

* Process synchronization: data coherency, atomic operations. Critical sections. SW approaches for mutual exclusion: Peterson and Dekker's algorithms, baker's algorithm. HW for mutual exclusion: test and set, swap. Synchronization constructs: semaphores, mutex, monitor.

* Deadlock: Deadlock conditions. Resource allocation graph. Deadlock prevention. Deadlock avoidance. Banker's algorithm. Deadlock detection e recovery.

* Memory management: Main memory. Logical and physical addressing. Relocation, address binding. Swapping. Memory allocation. Internal and external fragmentation. Paging. HW for paging: TLB. Page table. Multi-level paging. Segmentation. Segment table. Segmentation with paging.

* Virtual memory: Paging on demand. Page fault management. Page substitution algorithms: FIFO, optimal, LRU, LRU approximations. Page buffering. Frame allocation: local and global allocation. Thrashing. Working set model. Page fault frequency.

* Secondary memory. Logical and physical structure of disks. Latency time. Disk scheduling algorithms: FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK. RAID.

*File System: file, attributes and related operation. File types. Sequential and direct access. Directory structure. Access permissions and modes. Consistency semantics. File system structure. File system mounting. Allocation techniques: adjacent, linked, indexed. Free space management: bit vector, lists. Directory implementation: linear list, hash table.

* I/O subsystem: I/O Hardware. I/O techniques: programmed I/O, interrupt, DMA. Device driver and application interface. I/O kernel services: scheduling, buffering, caching, spooling.

Laboratory:
------------
- System calls for management of the file system
- System calls for management of processes
- System calls for management of signals and pipes
- System calls for management of fifo and message queues
- System calls for management of semaphores and shared memory
- Scheduling and memory management in MentOS

Examination Methods

The exam is composed of two parts: theory and laboratory.
To pass the exam, the student must show
- they have understood the principles related to how an operating system works
- they are able to describe the concepts in a clear and exhaustive way without digressions
- they are able to apply the acquired knowledge to solve application scenarios described by means of exercises, questions and projects.

Theory:
-------
The final exam consists of a written test containing questions and exercises. In case of restrictions due to the Coronavirus, there could be changes in the exam modality.

Laboratory:
-----------
The final exam consists in developing and delivering a laboratory project according to the specifications provided by the professors. The project will then be discussed in an oral exam. In case of restrictions due to Coronavirus, the examination modalities could change.

Total grade
-----------
The total grade (thery+laboratory) is given by:
theory_grade*0.5 + laboratory_grade*0.5.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

1° periodo di lezioni From 9/30/19 To 12/14/19
years Modules TAF Teacher
The fashion lab (1 ECTS) D Maria Caterina Baruffi (Coordinator)
I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
Control theory D Riccardo Muradore (Coordinator)
Biomedical Data and Signal Processing D Silvia Francesca Storti (Coordinator)
Python programming language D Maurizio Boscaini (Coordinator)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
CyberPhysical Laboratory D Andrea Calanca (Coordinator)
C++ Programming Language D Federico Busato (Coordinator)
LaTeX Language D Enrico Gregorio (Coordinator)
Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
Corso Europrogettazione D Not yet assigned
The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. D Matteo Cristani

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of thesis proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Various topics

Attendance modes and venues

As stated in the Teaching Regulations, attendance at the course of study is not mandatory.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.

 


Career management


Student login and resources


Tutoring faculty members


Erasmus+ and other experiences abroad