Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione Estiva Jul 15, 2020 Jul 15, 2020
Sessione Autunnale Oct 16, 2020 Oct 16, 2020
Sessione Autunnale Dicembre Dec 11, 2020 Dec 11, 2020
Sessione Invernale Mar 17, 2021 Mar 17, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G L M P Q S Z

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bicego Manuele

symbol email manuele.bicego@univr.it symbol phone-number +39 045 802 7072

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bontempi Pietro

symbol email pietro.bontempi@univr.it symbol phone-number +39 045 802 7614

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Boscolo Galazzo Ilaria

symbol email ilaria.boscologalazzo@univr.it symbol phone-number +39 045 8127804

Burato Alberto

symbol email alberto.burato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Canevari Giacomo

symbol email giacomo.canevari@univr.it symbol phone-number +39 045 8027979

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Centomo Stefano

symbol email stefano.centomo@univr.it symbol phone-number 045 802(7048)

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number 045 802 7985

Cozza Vittoria

symbol email vittoria.cozza@univr.it

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dall'Alba Diego

symbol email diego.dallalba@univr.it symbol phone-number +39 045 802 7074

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Demrozi Florenc

symbol email florenc.demrozi@univr.it symbol phone-number +39 045 802 7048

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Fratea Caterina

symbol email caterina.fratea@univr.it symbol phone-number 045 842 5358

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Geretti Luca

symbol email luca.geretti@univr.it symbol phone-number +39 045 802 7850

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Laking Rosanna Davison

symbol email rosanna.laking@univr.it

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number 045 802 7922

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +39 045 802 7089

Mazzi Giulio

symbol email giulio.mazzi@univr.it

Meli Daniele

symbol email daniele.meli@univr.it

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +39 045 802 7852

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7908

Zivcovich Franco

symbol email franco.zivcovich@univr.it

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7908

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

activated in the A.Y. 2020/2021
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module to be chosen among the following
6
C
INF/01
6
C
ING-INF/04
Tirocinio
6
F
-
Prova finale
6
E
-

2° Year activated in the A.Y. 2020/2021

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module to be chosen among the following
6
C
INF/01
6
C
ING-INF/04
Tirocinio
6
F
-
Prova finale
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008201

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

ING-INF/06 - ELECTRONIC AND INFORMATICS BIOENGINEERING

The teaching is organized as follows:

Teoria

Credits

4

Period

Primo semestre

Academic staff

Silvia Francesca Storti

Laboratorio

Credits

2

Period

Primo semestre

Academic staff

Silvia Francesca Storti

Learning outcomes

The aim of this course is to provide the basic knowledge of methods and models for biomedical sig- nal and image processing, developing the ability to analyze and solve problems of interest, mainly in the biomedical field. Each technique presented will be accompanied by applications on simulated and real signals. At the end of the course, the student will be able to show knowledge of the main methods of biomedical signals and image processing. They will possess the ability to formulate, ana- lyze and solve problems of interest in bioengineering, through the acquired theoretical and practical basic knowledge. Finally, the student will be able to evaluate the traditional methods in the biomedical sciences in order to devise new approaches to methodological problems with clinical reversibility.

Program

------------------------
MM: Teoria
------------------------
(1) Main biomedical signals and images. Origin, characteristics and acquisition of the main bioelectric signals (electroencephalographic signal - EEG, magnetoencephalographic – MEG, electrocardiographic - ECG, electromyographic - EMG, spontaneous and induced signals, evoked potentials - EP, event-related potentials - ERP); introduction to bioimaging. (2) Analysis techniques in the time and frequency domains. Fundamentals of digital signal processing and characterization in the time domain. Digital filtering methods, sampling, A/D conversion. Classic methods for frequency analysis; frequency bands and power spectrum, periodogram; time/frequency resolution; bispectra and coherence; feature extraction methods. Brain source imaging (direct and inverse problems for EEG and MEG signals) and functional and effective connectivity analysis methods. Applications on in-silico and real signals. (3) Statistical analysis of biomedical data. Review of basic concepts of descriptive and inferential statistics. Description of the measurement error, statistical description of the experimental data: statistical indices, confidence intervals, hypothesis test and significance level, simple and multivariate linear regression for biomedical signals and images. (4) Brain-computer interfaces. Introduction to the main data processing methods that allow to decode brain activity in real time and convert it into a control signal for a brain-computer interface. We will discuss the BCI model and its historical context, the invasive and non-invasive techniques allowing to measure in real time the responses of an individual to particular stimuli, the data interpretation (filtering, future extraction, classification) and the BCI technology.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with hands-on activities mainly in MATLAB environment aimed at familiarizing students with the main analysis methods of biomedical signals and images (e.g. ECG, EMG, EEG, evoked potentials, functional magnetic resonance imaging - fMRI). The laboratories also foresee a project activity in small groups for the solution of problems related to the analysis of biomedical data. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills in the context of bioengineering. Teaching methods. Regular lectures with power point presentation and blackboard, laboratory exercises and projects. The course approach is "hands on" where students will experiment the design and data analysis with the most suitable methodologies to solve real-life clinical-medical problems. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

Assessment is conducted via oral examination preceded by a discussion on the group project assigned during the lab. The final grade will be the average of the two grades (2/3 theory, 1/3 lab). To pass the exam, the students must show that: - they have understood the theoretical and practical concepts of the course; - they are able to use the knowledge acquired during the course to solve the assigned problems related to the processing of biomedical signals and data; - they are able to program in MATLAB environment in the context of signal and biomedical data processing.

???AdattamentoProvaEsameDSA???

Type D and Type F activities

1° periodo di lezioni From 9/30/19 To 12/14/19
years Modules TAF Teacher
The fashion lab (1 ECTS) D Maria Caterina Baruffi (Coordinatore)
I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
Control theory D Riccardo Muradore (Coordinatore)
Biomedical Data and Signal Processing D Silvia Francesca Storti (Coordinatore)
Python programming language D Maurizio Boscaini (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
CyberPhysical Laboratory D Andrea Calanca (Coordinatore)
C++ Programming Language D Federico Busato (Coordinatore)
LaTeX Language D Enrico Gregorio (Coordinatore)
Matlab-Simulink programming D Bogdan Mihai Maris (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
Corso Europrogettazione D Not yet assigned
The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. D Matteo Cristani

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources