Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (1st year)
2° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (2nd year)
3° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (3rd year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (1st year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (2nd year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (3rd year)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biomolecular fondamentals of life (2021/2022)
The teaching is organized as follows:
Learning outcomes
The course provides knowledge of biology, biochemistry and genetics necessary for understanding the physiological and pathological processes related to health and disease of individuals in different stages of life. Biological and biochemical knowledge will contribute to the acquisition of skills that improve people's health and nursing care. At the end of the course students will possess basic knowledge of organic chemistry and biochemistry, the structure-function relationships of the main classes of biological macromolecules, their metabolic regulation and the energy transformations of biochemical processes; knowledge of cellular and genetic biology related to structural, functional and molecular characteristics of the cell; understanding of the applications of genomic knowledge to medicine. This knowledge will enable students to understand cellular processes common to all living organisms, the basic mechanisms that regulate metabolic activity, reproduction and cellular interactions and transmission of genetic diseases in humans. BIOCHEMISTRY: the Course provides: -Basic knowledge of organic chemistry preparatory for biochemistry. -Knowledge related to the structure-function relationships of the most important biological macromolecules and to their metabolic regulation. -Knowledge about the relation between the different biochemical processes and the regulation of the energy level associated to them. At the end of the course the student will acquired the proper scientific terms and notions in order to critically and autonomously evaluate the biochemical processes of life. APPLYED BIOLOGY: The course provides the cognitive basis for understanding the contribution of biological macromolecules in biological organization, in the functioning of the structures of living organisms and in the most relevant aspects of human biology. The course also aims to introduce the fundamental concepts of Genetics, the most common genetic diseases and their transmission modes. At the end of the course the student will be able to know and understand the fundamentals of biology also in relation to the health status of human population.
Program
------------------------
MM: BIOCHIMICA
------------------------
------------------------
MM: BIOLOGIA APPLICATA
------------------------
Synthetic program General characteristics of living organisms. - Life macromolecules: DNA, RNA, proteins. - Cell structure and function: general characteristics, separation of subcellular components. Plasma membrane, cytoplasm, nucleus. - The molecular basis of hereditary information. DNA characteristics, Watson and Crick model. DNA replication. - Gene expression. Genetic code, transcription, translation. Gene expression regulation. - Genetics. Composition of the genome. - Mutations: types and effects. Spontaneous mutations. Mutagenesis by chemical and physical agents. - Genome Organization. - Chromatin: composition and structure. - Chromosomes: structural patterns, karyotype, anomalies. - The cell cycle. Mitosis - Sexual and meiosis reproduction. Gametogenesis. Meiotic Errors: Aneuploids. The gene dosage and inactivation of the X chromosome, the determination of sex in the embryo. - Genetics. Transmission of hereditary characters, Mendel's laws. Genotype and phenotype, autosomal and sex-related inheritance. Interpretation and discussion of genealogical trees. Genetics of blood groups. Methods of transmission of genetic diseases in humans, calculation of risks. Molecular Diagnosis.
Bibliography
Examination Methods
The examination consists of a written test, for each module, to be taken concurrently, designed to ascertain knowledge and understanding of topics in biology and biochemistry covering potentially all the topics listed in the course syllabus. It is divided into groups of questions related to the main topics of the course. The questions are formulated as multiple-choice and open-ended questions. The questions require knowledge of scientific terminology in biology and biochemistry, understanding of major metabolic processes and mechanisms of gene transmission and expression. The overall evaluation of the answers to the questions is expressed in 30ths. The Biology and Biochemistry knowledge exam will be passed if the overall course grade is greater than or equal to 18/30. The student may withdraw or reject the proposed grade and retake the exam at a subsequent appeal.