Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Compulsory activities for Smart Systems & Data Analytics
Compulsory activities for Embedded & Iot Systems
2° Year activated in the A.Y. 2024/2025
Modules | Credits | TAF | SSD |
---|
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
Modules | Credits | TAF | SSD |
---|
Compulsory activities for Smart Systems & Data Analytics
Compulsory activities for Embedded & Iot Systems
Modules | Credits | TAF | SSD |
---|
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
Modules | Credits | TAF | SSD |
---|
3 modules among the following (Computer vision and Human computer interaction 1st year only; Advanced computer architectures 2nd year only; the other courses both 1st and 2nd year. A.A. 2024/2025: Data visualization, Systems design laboratory and Electronic devices and sensors are not activated)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Advanced control systems (2024/2025)
Teaching code
4S009008
Teacher
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
ING-INF/04 - SYSTEMS AND CONTROL ENGINEERING
Period
Semester 1 dal Oct 1, 2024 al Jan 31, 2025.
Courses Single
Authorized
Learning objectives
The course aims to provide the following knowledge: theoretical and practical tools for modeling, analyzing and controlling a complex dynamic system using the most modern techniques based on the theory of nonlinear systems and optimization. At the end of the course the student will have to demonstrate that s/he has the following skills to apply the acquired knowledge: ability to model and analyze a dynamic system, even non-linear; ability to design (linear and/or nonlinear) controllers and observers based on optimality principles; ability to model a complex nonlinear dynamic system and to analyze its properties; ability to design a controller solving an optimal control problem and/or exploiting the theory of passivity; ability to deal with problems of estimation and identification; ability to synthesize a controller for complex mechatronic systems, possibly non-linear and/or time-varying; ability to continue studies independently in the context of advanced control systems. Student must also have the ability to define the technical specifications for designing an advanced controller for complex dynamic systems described by differential or difference equations. Student will have to be able to deal with other engineers (e.g. electronic, automatic, mechanical) to design advanced controllers for complex mechatronic systems. Student will have to show ability to continue its studies independently in the field of linear and non-linear controller design.
Prerequisites and basic notions
Dynamic systems, Robotics
Program
Topics that will be addressed during the course:
- manipulator dynamics
- motion control
- force control (force and impedance)
Topics that will be addressed during the lab activity:
- Implementation of the dynamic model of a 6 degree-of-freedom robot
- Implementation of architectures for motion control
- Implementation of architectures for force control
Didactic methods
Frontal lessons for the theoretical part; Lectures with the active involvement of students for the laboratory part.
Learning assessment procedures
The exam will consist in the discussion of the homework (HWs) assigned during the semester on the topics developed during the course.
Evaluation criteria
To pass the exam, the student must demonstrate:
- to have understood the principles related to the design of advanced control systems,
- to be able to use the knowledge acquired during the course to solve the assigned problems,
- to be able to describe their work by explaining and motivating the design choices.
Criteria for the composition of the final grade
The final mark will be the composition of the mark on the homework (correctness and quality of the presentation) and on their exposure during the oral exam.
Exam language
Inglese / English