Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Compulsory courses for Embedded & IoT Systems
Compulsory courses for Smart systems &data analytics
2° Anno Attivato nell'A.A. 2021/2022
Insegnamenti | Crediti | TAF | SSD |
---|
Compulsory courses for Embedded & IoT Systems
Compulsory courses for Robotics systems
Compulsory courses for Smart systems &data analytics
Insegnamenti | Crediti | TAF | SSD |
---|
Compulsory courses for Embedded & IoT Systems
Compulsory courses for Smart systems &data analytics
Insegnamenti | Crediti | TAF | SSD |
---|
Compulsory courses for Embedded & IoT Systems
Compulsory courses for Robotics systems
Compulsory courses for Smart systems &data analytics
Insegnamenti | Crediti | TAF | SSD |
---|
3 courses to be chosen among the following
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Dynamic systems (2020/2021)
Codice insegnamento
4S009000
Crediti
9
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
ING-INF/04 - AUTOMATICA
L'insegnamento è organizzato come segue:
Teoria
Laboratorio
Obiettivi formativi
Il corso mira a fornire conoscenze su basi teoriche della teoria dei sistemi dinamici, nella rappresentazione di stato, con particolare riferimento alle proprietà dei sistemi lineari tempo invarianti e ai metodi per la sintesi di controllori per tali sistemi.
Al termine del corso lo studente dovrà dimostrare capacità di applicare le conoscenze acquisite: fornire le conoscenze per analizzare le proprietà strutturali di un sistema dinamico lineare (e.g. raggiungibilità e osservabilità) e la sua stabilità. Calcolare le matrici di osservabilità e raggiungibilità; progettare uno controllore a retroazione dallo stato; progettare un osservatore asintotico dello stato; applicare la teoria della stabilità di Lyapunov. Dovrà possedere la capacità di definire le specifiche tecniche per progettare un controllore per sistemi dinamici lineari descritti da equazioni differenziali o alle differenze. Dovrà essere in grado di confrontarsi con altri ingegneri (e.g. elettronici, automatici, meccanici) per progettare controllori avanzati per sistemi elettromeccanici complessi. Dovrà mostrare capacità di proseguire gli studi in modo autonomo nell’ambito della progettazione di controllori robusti e ottimi per sistemi lineari e non lineari.
Programma
Ripasso dei concetti fondamentali di analisi dei sistemi:
- definizioni e proprieta' dei sistemi lineari tempo invarianti (LTI)
- modelli nel dominio del tempo, delle frequenze e della variabile s
- la funzione di trasferimento
- analisi delle proprieta' dei sistemi LTI in t, s, f e z,
- sistemi a tempo discreto e trasformata Zeta
- proprietà principali dei sistemi retroazionati
Modelli di stato:
- Modelli AR, MA, ARMA
- Rappresentazione Ingresso-Stato-Uscita
- Definizione di stato, causalità, sistemi algebricamente equivalenti
- Mappa di aggiornamento dello stato e dell’uscita
- Matrice esponenziale e sue proprietà
- Forma canonica di Jordan, polinomio caratteristico, molteplicità algebrica, molteplicità geometrica
- Matrice di transizione dello stato, potenza ed esponenziale dei miniblocchi di Jordan
- Modi, carattere dei modi, stabilità semplice/asintotica/BIBO
- Legame tra la rappresentazione di stato e la trasformata di Laplace/Zeta
- Funzione di trasferimento, autovalori e poli
Stabilità dei modelli di stato:
- Stato di equilibrio
- Stabilità degli stati di equilibrio
- Criterio di stabilità di Lyapunov
- Equazione di Lyapunov
- Linearizzazione e criterio ridotto di Lyapunov
Raggiungibilità
- Concetti generali, Gramiano di raggiungibilità
- Controllo nello spazio di stato
- Forma standard di raggiungibilità, forma canonica di controllo
- Criterio PBH per la raggiungibilità
- Retroazione dallo stato
Osservabilità
- concetti generali, Gramiano di osservabilità
- Stima dello stato (catena aperta e catena chiusa)
- Forma standard di osservabilità, forma canonica di osservazione
- Criterio PBH per l’osservabilità
Dualità
- Cenni sul filtro di Kalman a tempo discreto
- Cenni sul controllore ottimo lineare quadratico a tempo discreto
Bibliografia
Attività | Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|---|
Teoria | A. Giua, C. Seatzu | Analisi dei sistemi dinamici | Springer-Verlag | |||
Teoria | Dalle lezioni | Appunti dalle lezioni | 2021 | |||
Teoria | E. Fornasini, G. Marchesini | Appunti di Teoria dei sistemi | Edizioni Libreria Progetto Padova | 2011 | ||
Laboratorio | Dalle lezioni | Appunti dalle lezioni | 2021 |
Modalità d'esame
L'esame consisterà in una prova scritta sugli argomenti del corso. La prova conterrà quesiti sotto forma di domande teoriche e di esercizi dove sarà richiesto di applicare le tecniche e le metodologie spiegate durante il corso. Ogni quesito contribuirà al punteggio totale in trentesimi secondo una metrica additiva che verrà specificata nel testo dell'esame.
Se lo scritto è sufficiente, è possibile richiedere una prova orale che verterà sulla parte teorica del corso e farà media con la prova scritta.
Entrambe le prove (scritta e orale facoltativa) saranno tese ad accertare la comprensione degli argomenti teorici e la capacità di applicare gli schemi logici a specifiche problematiche.