Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Matematica applicata - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2011/2012
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
3° Anno Attivato nell'A.A. 2012/2013
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Sistemi stocastici (2012/2013)
Codice insegnamento
4S00254
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
L'insegnamento è organizzato come segue:
Teoria
Esercitazioni
Obiettivi formativi
Introduzione alla modellizzazione matematica ed alla simulazione di sistemi stocastici con spazio degli stati discreto.
Programma
1) Costruzione, simulazione e proprietà asintotiche di Catene di Markov in tempo discreto, Processi con rinnovi, Catene di Markov in tempo continuo. 2) Martingale associate a Catene di Markov in tempo discreto 3) Calcolo e approssimazione di probabilità invarianti, algoritmo di Metropolis, simulazione di code e processi di rinnovo mediante il linguaggio Matlab.
Modalità d'esame
Colloquio orale, in cui si discute anche la risoluzione (implementazione e risultati ottenuti) di esercizi obbligatori assegnati in laboratorio.
Materiale e documenti
-
Dispensa (it, 241 KB, 9/25/12)