Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
FISIO VI 2^ ANNO - 1^ SEMESTRE | Oct 3, 2016 | Nov 18, 2016 |
FISIO VI 3^ ANNO - 1^ SEMESTRE | Oct 3, 2016 | Nov 11, 2016 |
FISIO VI 1^ ANNO - 1^ SEMESTRE | Oct 10, 2016 | Dec 21, 2016 |
FISIO VI 2^ ANNO - 2^ SEMESTRE | Feb 27, 2017 | Apr 28, 2017 |
FISIO VI 3^ ANNO - 2^ SEMESTRE | Feb 27, 2017 | Apr 12, 2017 |
FISIO VI 1^ ANNO - 2^ SEMESTRE | Mar 6, 2017 | May 12, 2017 |
Session | From | To |
---|---|---|
FISIO VI SESSIONE INVERNALE 2 e 3 ANNO | Dec 19, 2016 | Jan 27, 2017 |
FISIO VI SESSIONE INVERNALE 1 ANNO | Jan 9, 2017 | Feb 3, 2017 |
FISIO VI SESSIONE ESTIVA | Jul 3, 2017 | Jul 28, 2017 |
FISIO VI SESSIONE AUTUNNALE | Sep 4, 2017 | Sep 29, 2017 |
Session | From | To |
---|---|---|
FISIO SESSIONE AUTUNNALE | Nov 1, 2017 | Nov 30, 2017 |
FISIO SESSIONE PRIMAVERILE | Mar 1, 2018 | Mar 31, 2018 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2016 | Nov 1, 2016 |
Festa dell'Immacolata | Dec 8, 2016 | Dec 8, 2016 |
Vacanze Natalizie | Dec 23, 2016 | Jan 7, 2017 |
Vacanze Pasquali | Apr 14, 2017 | Apr 18, 2017 |
Festa della Liberazione | Apr 25, 2017 | Apr 25, 2017 |
Festa dei Lavoratori | May 1, 2017 | May 1, 2017 |
Festa della Repubblica | Jun 2, 2017 | Jun 2, 2017 |
Vacanze Estive | Aug 14, 2017 | Aug 19, 2017 |
FESTA DEL SANTO PATRONO Vicenza | Sep 8, 2017 | Sep 8, 2017 |
Description | Period | From | To |
---|---|---|---|
FISIO VI 3^ anno - 1^semestre (1° esperienza) | FISIO VI 3^ anno - 1^semestre (1° esperienza) | Nov 14, 2016 | Dec 16, 2016 |
FISIO VI 2^ anno - 1^semestre (1° esperienza) | FISIO VI 2^ anno - 1^semestre (1° esperienza) | Nov 21, 2016 | Dec 16, 2016 |
FISIO VI 3^ anno - 1^semestre (2° esperienza) | FISIO VI 3^ anno - 1^semestre (2° esperienza) | Jan 30, 2017 | Feb 24, 2017 |
FISIO VI 2^ anno - 1^semestre (2° esperienza) | FISIO VI 2^ anno - 1^semestre (2° esperienza) | Jan 30, 2017 | Feb 24, 2017 |
FISIO VI 1^ anno - 1^semestre | FISIO VI 1^ anno - 1^semestre | Feb 6, 2017 | Mar 3, 2017 |
FISIO VI 3^ anno - 2^semestre | FISIO VI 3^ anno - 2^semestre | Apr 19, 2017 | Jun 23, 2017 |
FISIO VI 2^ anno - 2^semestre | FISIO VI 2^ anno - 2^semestre | May 2, 2017 | Jun 23, 2017 |
FISIO VI 1^ anno - 2^semestre | FISIO VI 1^ anno - 2^semestre | May 15, 2017 | Jun 23, 2017 |
Exam calendar
Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Cunico Laura
Domenicali Chiara
Giacomuzzi Renata
Nai Fovino Federica
Negrin Rolando
Pavan Silvana
Ramondo Angelo Bruno
Randon Fabio Mario
Scapin Mario
Scarton Cinzia
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Propaedeutic physical and biological sciences (2016/2017)
The teaching is organized as follows:
Learning outcomes
The whole course is intended to provide knowledge of basic sciences, as biochemistry, cell biology and genetics, physics and statistics, preparatory for further specific courses, with particular regards to concepts subsequently useful for understanding and deepening biomedical and physioterapic issues.
By the end of the course students will have acquired:
- knowledge of cell biology and genetics basic mechanisms which regulate cell activities, reproduction, interactions, through the acquisition of the fundamental concepts of functional and molecular principles of cellular processes common to all living organisms and of the mode of transmission of human genetic diseases;
- basic knowledge of organic chemistry and biochemistry on the structure-function relationships of the most important biological macromolecules, the metabolic regulation at the molecular level, and the energy level changes associated to different biochemical pathways;
- expertise in bio-statistics, with particula regards to basic statistical methods for the analysis of biomedical data such as basic theoretical and practical tools for summarizing sample information, probability calculation, and for generalizing the information collected on a sample to the target population;
- basic knowledge and understanding of fundamental laws of physics, particularly of mechanics and fluidodynamics, and their application in biomedical phenomena and real situations, as well as the ability to solve simple physics problems also relative to real situations, such as joints and equilibrium of bodies.
This fundamental knowledge is a prerequisite for further specializations that will be object of the following year teachings. The course of Propaedeutic physical and biological sciences is preparatory for Human Physiology, Chinesiology and Clinical practice (1st Year) assessments.
More details are available on the specific forms dedicated to the individual modules that constitute the teaching.
Program
------------------------
MM: BIOCHEMISTRY
------------------------
PREPARATORY CHEMISTRY (several notions are included in the basic knowledge required)
1. Atomic structure and periodic properties of the elements: matter composition, atom, atomic particles; atomic theory; quantum numbers, and orbitals; electronic configuration, periodic table and chemical reactivity of the elements; electronic affinity, electronegativity.
2. The chemical bond: molecules and ions; ionic and covalent bond; intermolecular forces; hydrogen bond.
3. Solutions and acid-base reactions: concentration of the solutions, acid-base theories of Arrhenius and Brőnsted-Lowry; hydracids, hydroxides, oxyacids; acid-base reactions; pH and buffer solutions.
4. Organic chemistry notions: carbon atom properties; hybrid orbitals; organic compounds classification: functional groups; hydrocarbons; alcohols, ethers, thiols, amines, aldehydes and ketones; carboxylic acids, esters, anhydrides.
BIOCHEMISTRY
1. Constitutive elements of the living matter: polymeric structure of the biological macromolecules.
2. Protein structure and function: aminoacid classification, buffering power, peptide bond, levels of protein structure; fibrous and globular proteins; hemoglobin and myoglobin: structure, function, factors influencing the oxygen bond; hemoglobin variants; enzymes: classification, role in the chemical reactions, regulation of the enzymatic activity.
3. Vitamins: hydro- and lypo-soluble vitamins; co-enzymes.
4. Bio-energetics: metabolism; chemical transformations in the cell; spontaneous and non-spontaneous reactions of the metabolic reactions; ATP as “energy exchange coin”; biologically relevant redox reactions.
5. Carbohydrates structure and metabolism: mono- and disaccharides; polysaccharides; glycoconjugates; glycolysis and its regulation; gluconeogenesis; hints of the penthose phosphate pathway; synthesis of the glycogen.
6. Citric acid cycle and oxidative phosphorylation: mitochondria; acetyl-CoA synthesis; citric acid cycle control; respiratory chain and electron transport; ATP synthesis.
7. Lipids structure and metabolism: structural lipids and biological membranes; cholesterol; stock-reserve lipids; lipids digestion and fatty acid β-oxydation; keton bodies formation; hints of fatty acids biosynthesis.
8. Aminoacid metabolism: hints of gluco- and keto-forming aminoacids; transamination and oxidative deamination; the urea cycle.
------------------------
MM: APPLIED PHYSICS
------------------------
INTRODUCTION
examples, measurement units
POINT KINEMATICS
position, displacement, velocity, acceleration
linear motion, circular motion
vectors
POINT KINETICS
Forces, Newton's laws
Power, work, kinetic energy, potential energy, mechanical energy
Conservative and not-conservative forces
examples
ROTATIONAL DYNAMICS AND EQUILIBRIUM
rigid body definition, translation and rotation
Moment of Inertia
Torques
Static equilibrium of a rigid body
examples
------------------------
MM: MEDICAL STATISTICS
------------------------
Use of statistics in health data
Collection and presentation of data
Measurement procedure and Variable types
Precision and accuracy of a measurement procedure
Tables 1 and 2 entries
Absolute and relative frequencies
Cumulative frequencies
Graphical representation of the data
Position and dispersion measures
Mode
Quantiles and median
Simple and weighted mean
Range and standard deviation
Coefficient of variation
Introduction to probability
Definition of probability
Rule of addition and multiplication
Independent and conditional probability
Introduction to statistical inference
The concept of statistical inference
Inference techniques:
Binomial and Gauss distribution, confidence intervals and Hypothesis testing
Diagnostic and screening test:Sensitivity, specificity, positive predictive value of screening.
------------------------
MM: APPLIED BIOLOGY
------------------------
- Characteristics of the living beings. Organization levels of living organisms. Symbiosis. Autotrophy and heterotrophy.
- Water: characteristics and biological importance.
- Structure, function, replication of the eukaryotic and prokaryotic cell. Role of the cell compartmentalisation.
- Biological membrane: structure, properties and function. Passage of materials across cell membranes. Cell junctions.
- Cell communication.
- Cell cycle and its regulation, mitosis, meiosis, cell death. Sexual and asexual reproduction.
- The human genome. Organisation of DNA in chromosome. Chromatin structure and composition.
- DNA: structure, function, replication. DNA and its role in heredity. Definition of gene. Informational pathway: transcription, RNA maturation, genetic code, translation and protein synthesis.
- DNA mutation and repair.
- Chromosomal bases of inheritance: Normal and pathological human karyotype.
- Hereditary character transmission and Mendel’s laws. Mode of genetic information transmission: autosomal and sex-linked heredity. Introduction to transmission of complex characters.
- Hereditary and genetic diseases. Examples. Somatic mutations and cancer.
Bibliography
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Docente del corso | Fisica: dispense del docente | ||||
A. Fiecchi, M. Galli Kienle, A. Scala | Chimica e propedeutica biochimica | Edi-Ermes | |||
Luciano BINAGLIA, Bruno GIARDINA | CHIMICA e PROPEDEUTICA BIOCHIMICA (con CD-ROM) | Ediz. Mc Graw-Hill | |||
Verlato G, Zanolin ME | Esercizi di Statistica Medica, Informatica ed Epidemiologia | Libreria Cortina Editrice, Verona | 2000 | ||
Douglas G. Altman | Practical Statistics for Medical Research | 1990 | |||
Lantieri PB, Risso D., Rovida S., Ravera G. | Statistica medica ed elementi di informatica. | McGraw-Hill Libri Italia srl Milano | 1994 | ||
Roberti, Antognelli, Bistocchi, Talesa | Biochimica e Biologia per le professioni sanitarie (Edizione 2) | McGraw-Hill | 2013 | ||
Solomon, Berg, Martin | Elementi di Biologia (Edizione 6) | EdiSES | 2013 | ||
Sadava, Hillis, Craig Heller, Hacker | Elementi di Biologia e Genetica (Edizione 5) | Zanichelli | 2019 | 9788808820655 |
Examination Methods
The exam consists of 4 written tests, one for each module, based on all the issues covered throughout the course. For each academic year, 6 periods are available to take the exams: 2 in the Winter Session at the end of the course, 2 in the Summer Session and 2 in the Autumn Session. The 4 tests can be passed separately as long as they are within the Winter Session at the course ending. In the Summer and Autumn Sessions, tests must be passed simultaneously.
Students who have been admitted to the undergraduate degree with a score lower than 6 points in Biology, 3 points in Chemistry and / or 3 points in Physics and Mathematics, must have first discharged their training debts, before taking the exam.
To pass the exam, students must get a score of not less than 18/30 in each test. The final mark (/out of 30) willl derive from the weighted average over credits of each single test score. Students can retire or refuse the proposed score: in such case, any partial credit will be canceled and the students shall enroll again for the whole examination (all the 4 tests).
See the forms of each single module for more details.
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Graduation
Attachments
Title | Info File |
---|---|
![]() |
263 KB, 07/03/23 |
![]() |
363 KB, 13/02/23 |
![]() |
185 KB, 17/01/23 |
Gestione carriere
Student login and resources
Appelli d'esame
Si pubblicano gli appelli per la sessione invernale per il 2° anno
Si pubblicano gli appelli per la sessione invernale per il 1° e 3° anno
Attachments
Title | Info File |
---|---|
![]() |
417 KB, 09/11/22 |
![]() |
415 KB, 07/11/22 |
![]() |
412 KB, 09/11/22 |
Orario lezioni
Si pubblicano i calendari dellle lezioni
Calendario 3 anno 2 semestre 02/02/2023
Calendario didattico A.A. 2022-2023
Attachments
Title | Info File |
---|---|
![]() |
120 KB, 05/10/22 |
![]() |
191 KB, 04/10/22 |
![]() |
183 KB, 12/09/22 |
![]() |
134 KB, 05/10/22 |
![]() |
191 KB, 02/02/23 |