Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Periodo generico Oct 1, 2023 May 31, 2024
Primo semestre (lauree magistrali) Oct 2, 2023 Dec 22, 2023
Secondo semestre (lauree magistrali) Feb 26, 2024 May 24, 2024
Exam sessions
Session From To
Sessione invernale (lauree magistrali) Jan 8, 2024 Feb 23, 2024
Sessione estiva (lauree magistrali) May 27, 2024 Jul 12, 2024
Sessione autunnale (lauree magistrali) Aug 26, 2024 Sep 20, 2024
Degree sessions
Session From To
Sessione autunnale a.a. 2022/2023 Dec 5, 2023 Dec 7, 2023
Sessione invernale a.a. 2022/2023 Apr 3, 2024 Apr 5, 2024
Sessione estiva a.a. 2023/2024 Sep 4, 2024 Sep 6, 2024

Exam calendar

Exam dates and rounds are managed by the relevant Economics Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F G L M N P R S Z

Bertoli Paola

symbol email paola.bertoli@univr.it symbol phone-number 045 8028 508

Buccheri Giuseppe

symbol email giuseppe.buccheri@univr.it symbol phone-number 045 8028525

Bucciol Alessandro

symbol email alessandro.bucciol@univr.it symbol phone-number 045 802 8278

Campolmi Alessia

symbol email alessia.campolmi@univr.it symbol phone-number 045 802 8071

Chesini Giuseppina

symbol email giusy.chesini@univr.it symbol phone-number 045 802 8495 (VR) -- 0444/393938 (VI)

Cipriani Giam Pietro

symbol email giampietro.cipriani@univr.it symbol phone-number 045 802 8271

De Mari Michele

symbol email michele.demari@univr.it symbol phone-number 045 802 8226

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Florio Cristina

symbol email cristina.florio@univr.it symbol phone-number 045 802 8296

Frattarolo Lorenzo

symbol email lorenzo.frattarolo@univr.it symbol phone-number 045 8028239

Gaudenzi Barbara

symbol email barbara.gaudenzi@univr.it symbol phone-number 045 802 8623

Gnoatto Alessandro

symbol email alessandro.gnoatto@univr.it symbol phone-number 045 802 8537

Levati Maria Vittoria

symbol email vittoria.levati@univr.it symbol phone-number 045 802 8640

Malpede Maurizio

symbol email maurizio.malpede@univr.it

Matteazzi Eleonora

symbol email eleonora.matteazzi@univr.it symbol phone-number 045 8028741

Menon Martina

symbol email martina.menon@univr.it symbol phone-number 045 8028420

Minozzo Marco

symbol email marco.minozzo@univr.it symbol phone-number 045 802 8234

Nicodemo Catia

symbol email catia.nicodemo@univr.it symbol phone-number +39 045 8028340

Perali Federico

symbol email federico.perali@univr.it symbol phone-number 045 802 8486

Pertile Paolo

symbol email paolo.pertile@univr.it symbol phone-number 045 802 8438

Picarelli Athena

symbol email athena.picarelli@univr.it symbol phone-number 045 8028242

Roffia Paolo

symbol email paolo.roffia@univr.it symbol phone-number 045 802 8012

Scricciolo Catia

symbol email catia.scricciolo@univr.it symbol phone-number 045 8028341

Sommacal Alessandro

symbol email alessandro.sommacal@univr.it symbol phone-number 045 802 8716

Stacchezzini Riccardo

symbol email riccardo.stacchezzini@univr.it symbol phone-number 0458028186

Zago Angelo

symbol email angelo.zago@univr.it symbol phone-number 045 802 8414

Zoli Claudio

symbol email claudio.zoli@univr.it symbol phone-number 045 802 8479

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
9
B
SECS-P/05
One module between the following
Stage
3
F
-

2° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
Two modules among the following
6
C
SECS-P/03
6
C
SECS-P/02
Two modules among the following
6
B
SECS-P/11
One module between the following
Final exam
15
E
-
ModulesCreditsTAFSSD
9
B
SECS-P/05
One module between the following
Stage
3
F
-
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
Two modules among the following
6
C
SECS-P/03
6
C
SECS-P/02
Two modules among the following
6
B
SECS-P/11
One module between the following
Final exam
15
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Further language skills
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02464

Credits

9

Language

English en

Scientific Disciplinary Sector (SSD)

SECS-P/05 - ECONOMETRICS

Period

Secondo semestre (lauree magistrali) dal Feb 26, 2024 al May 24, 2024.

Courses Single

Authorized

Learning objectives

The course provides an overview of the main econometric tools, with particular emphasis on economic applications, developed interactively using the R package. The program covers standard econometric models (OLS regression and its diagnostics) as well as more advanced models for the analysis of cross-sectional (IV, probit, tobit), time series (autoregressive) and panel data (random and fixed effects). Particular attention will be given to the intuition behind each topic, in addition to more formal issues.
Part of the evaluation is based on the delivery of an assignment, whose aim is applying on concrete cases the tools learnt in class and stimulating discussion among students. At the end of the course, students should be able to: i) read and critically interpret empirical works developed by other researchers, ii) manage small and large datasets in order to extract useful information, and iii) design and implement on their own empirical analyses based on real data.

Prerequisites and basic notions

Working knowledge of basic mathematics and statistics is recommended.

Program

1. INTRODUCTION
1a. What is Econometrics?
Definition; cross-section, time series and panel data.
1b. R tutorial
Data management; basic statistics; graphics.
2. ORDINARY LEAST SQUARES (OLS) ESTIMATOR
2a. Introduction
Univariate and multivariate regression; marginal effects and elasticity; R-squared and adjusted R-squared; outliers.
2b. Properties
Gauss-Markov assumptions; unbiasedness; efficiency; consistency; asymptotic normality.
2c. Testing
t-test on one restriction; F test on several restrictions.
3. OLS DIAGNOSTICS
3a. Specification
Collinearity; superfluous and omitted variables; RESET test of specification; Chow test of structural stability.
3b. Heteroskedasticity
White test and Breusch-Pagan test; White robust standard errors.
3c. Time series
Stationarity; AR processes; Durbin-Watson and Breusch-Godfrey tests; Newey-West robust standard errors.
4. INSTRUMENTAL VARIABILE (IV) ESTIMATOR
4a. Estimator
Assumptions; Simple instrumental variable (SIV) and generalized instrumental variable (GIV); properties; two-stage derivation (2SLS).
4b. Instrument selection
Relevance test; weak instruments; Sargan validity test; Hausman exogeneity test.
5. LIMITED DEPENDENT VARIABLE (LDV)
5a. Binary dependent variable
Linear probability model (LPM); probit and logit models; marginal effects; maximum likelihood estimate; goodness of fit; hypothesis testing.
5b. Truncated and censored data
Truncated regression; tobit-I model; tobit-II and heckman models; marginal effects; goodness of fit.
6. PANEL DATA
6a. Models
Difference-in-difference; Pooled effects, fixed effects and random effects.
6b. Testing
Goodness of fit; comparison tests; attrition.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Frontal teaching. Lectures include real examples interactively developed using the data management free software R.

Learning assessment procedures

The exam is made of one written essay and one individual homework. No oral integration is planned.
The written essay lasts one hour and thirty minutes and covers the whole program of the course. Use of handheld calculators is allowed, but use of personal notes or other teaching material is not allowed.
The homework is developed individually, and can be of two types (Homework I or Homework II). Homework I aims to develop analytical skills through personal data analysis. Homework II aims to develop critical skills with respect to empirical applications. Each student can choose which type of homework to deliver, but must deliver one of them. Once the deadline for delivery of Homework I has expired, it is possible to deliver Homework II only. The homework has to be delivered before taking part in the written essay; its grade remains valid throughout the academic year.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

The written essay evaluates general understanding of the main econometric topics and the ability to understand and interpret tables reporting econometric output. The homeworks ascertain the ability to develop empirical research through personal elaboration (Homework I) or to critically comment empirical research developed by others (Homework II).

Criteria for the composition of the final grade

The final grade is given by the average of the grades in the essay and the homework, with 80% and 20% weights respectively. In order to pass the exam, it is necessary to obtain a grade not below 18/30 in the written essay. Students can separately reject the essay grade and the homework grade. However, the homework grade can be rejected only once.

Exam language

Inglese

Type D and Type F activities

Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").

Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.

Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.

Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.

Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.
 

COMPETENZE TRASVERSALI

 

Scopri i percorsi formativi promossi dal  Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali

 

CONTAMINATION LAB

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

 

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

Primo semestre (lauree) From 9/25/23 To 1/19/24
years Modules TAF Teacher
1° 2° Thematic cycle of conferences on Women's "leadership": data, reflections and experiences D Martina Menon (Coordinator)
1° 2° Educational laboratory on credit securitization D Michele De Mari (Coordinator)
Periodo generico From 10/1/23 To 5/31/24
years Modules TAF Teacher
1° 2° Data Analysis Laboratory with R (Verona) D Marco Minozzo (Coordinator)
1° 2° Data Visualization Laboratory D Marco Minozzo (Coordinator)
1° 2° Python Laboratory D Marco Minozzo (Coordinator)
1° 2° Data Science Laboratory with SAP D Marco Minozzo (Coordinator)
1° 2° Advanced Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° Laboratory on research methods for business D Cristina Florio (Coordinator)
1° 2° Laboratory on research methods for business D Cristina Florio (Coordinator)
1° 2° Plan your future D Paolo Roffia (Coordinator)
1° 2° Plan your future D Paolo Roffia (Coordinator)
1° 2° Programming in Matlab D Marco Minozzo (Coordinator)
1° 2° Programming in SAS D Marco Minozzo (Coordinator)
Primo semestre (lauree magistrali) From 10/2/23 To 12/22/23
years Modules TAF Teacher
1° 2° Elements of financial risk management 2023/2024 D Claudio Zoli (Coordinator)
1° 2° English for business and economics F Claudio Zoli (Coordinator)
1° 2° Introduction to business plan D Paolo Roffia (Coordinator)
1° 2° Introduction to Java programming D Alessandro Gnoatto (Coordinator)
1° 2° Topics in applied economics and finance - 2023/2024 D Claudio Zoli (Coordinator)
Secondo semestre (lauree magistrali) From 2/26/24 To 5/24/24
years Modules TAF Teacher
1° 2° Data discovery for business decisions D Claudio Zoli (Coordinator)
1° 2° Digital experiments in economics - 2023/2024 D Claudio Zoli (Coordinator)
1° 2° The accountant as a business consultant D Riccardo Stacchezzini (Coordinator)
1° 2° Key markets / business approach & business negotiations - 2023/2024 D Angelo Zago (Coordinator)
1° 2° Professional communication for economics – 2023/2024 D Claudio Zoli (Coordinator)
1° 2° The why, the what and the how of structural equation modelling D Cristina Florio (Coordinator)
1° 2° Topics in economics and ethics of artificial intelligence- 2023/2024 D Claudio Zoli (Coordinator)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

List of thesis proposals

theses proposals Research area
PMI (SMES) and financial performance MANAGEMENT OF ENTERPRISES - MANAGEMENT OF ENTERPRISES
Corporate governance, financial performance and international business Various topics

Linguistic training CLA


Internships

The curriculum of the three-year degree courses (CdL) and master's degree courses (CdLM) in the economics area includes an internship as a compulsory training activity. Indeed, the internship is considered an appropriate tool for acquiring professional skills and abilities and for facilitating the choice of a future professional outlet that aligns with one's expectations, aptitudes, and aspirations. The student can acquire further competencies and interpersonal skills through practical experience in a work environment.


Gestione carriere


Student login and resources


Methods of teaching delivery

All lectures as well as all the exams are held in person. In particular, we highlight the importance of taking part in classroom activities in order to benefit from interaction with colleagues and instructors and participating in project works, presentations and group works that could be organized by the different courses.

Furthermore, as a further service to students, the lessons will be video-recorded and made available on the relevant e-learning platform of the courses unless otherwise communicated by the individual lecturers who will also define the methods and times for activating this service. However, it is underlined that the recordings do not represent a substitute for the lectures and activities carried out in the classroom.