Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Mathematics - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

1° Year 

ModulesCreditsTAFSSD

2° Year   activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
1 module among the following 
Between the years: 1°- 2°
1 module between the following (a.a. 2023/24 Homological Algebra not activated - a.a. 2024/25 Computational Algebra not activated)
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008272

Credits

6

Language

English en

Also offered in courses:

Courses Single

Authorized

The teaching is organized as follows:

COMMUTATIVE ALGEBRA en

Credits

3

Period

Semester 2

Learning objectives

The goal of the course is to introduce the basic notions and techniques of algebraic geometry including the relevant parts of commutative algebra, and create a platform from which the students can take off towards more advanced topics, both theoretical and applied, also in view of a master's thesis project. The fist part of the course provides some basic concepts in commutative algebra, such as localization, Noetherian property and prime ideals. The second part covers fundamental notions and results about algebraic and projective varieties over algebraically closed fields and develops the theory of algebraic curves from the viewpoint of modern algebraic Geometry. Finally, the student will be able to deal with some applications, as for instance Gröbner basis or cryptosystems on elliptic curves over finite fields.

Prerequisites and basic notions

The students will be expected to have passed a first course in abstract Algebra course equivalent to the second year of the Applied Mathematics degree.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Criteria for the composition of the final grade

The final mark will be awarded on the basis of the oral exam, with an extra point awarded to those students who achieve 50% or higher in the weekly exercise sheets.