Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2018 Jan 31, 2019
II semestre Mar 4, 2019 Jun 14, 2019
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2019 Feb 28, 2019
Sessione estiva d'esame Jun 17, 2019 Jul 31, 2019
Sessione autunnale d'esame Sep 2, 2019 Sep 30, 2019
Degree sessions
Session From To
Sessione estiva Jul 16, 2019 Jul 16, 2019
Sessione autunnale Nov 19, 2019 Nov 19, 2019
Sessione invernale Mar 11, 2020 Mar 11, 2020
Holidays
Period From To
Sospensione attività didattica Nov 2, 2018 Nov 3, 2018
Vacanze di Natale Dec 24, 2018 Jan 6, 2019
Vacanze di Pasqua Apr 19, 2019 Apr 28, 2019
Vacanze estive Aug 5, 2019 Aug 18, 2019

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M P R S T U V Z

Assfalg Michael

symbol email michael.assfalg@univr.it symbol phone-number +39 045 802 7949

Astegno Alessandra

symbol email alessandra.astegno@univr.it symbol phone-number 045802 7955

Badino Massimiliano

symbol email massimiliano.badino@univr.it symbol phone-number +39 045 802 8459

Ballottari Matteo

symbol email matteo.ballottari@univr.it symbol phone-number 045 802 7098

Bassi Roberto

symbol email roberto.bassi@univr.it symbol phone-number 045 802 7916; Lab: 045 802 7915

Bellin Diana

symbol email diana.bellin@univr.it symbol phone-number 045 802 7090

Bettinelli Marco Giovanni

symbol email marco.bettinelli@univr.it symbol phone-number 045 802 7902

Bolzonella David

symbol email david.bolzonella@univr.it symbol phone-number 045 802 7965

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Buffelli Mario Rosario

symbol email mario.buffelli@univr.it symbol phone-number +39 0458027268

Cecconi Daniela

symbol email daniela.cecconi@univr.it symbol phone-number +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

symbol email roberto.chignola@univr.it symbol phone-number 045 802 7953

Crimi Massimo

symbol email massimo.crimi@univr.it symbol phone-number 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

symbol email luca.dallosto@univr.it symbol phone-number +39 045 802 7806

Delledonne Massimo

symbol email massimo.delledonne@univr.it symbol phone-number 045 802 7962; Lab: 045 802 7058

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Dominici Paola

symbol email paola.dominici@univr.it symbol phone-number 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

symbol email mariapina.donofrio@univr.it symbol phone-number 045 802 7801

Frison Nicola

symbol email nicola.frison@univr.it symbol phone-number 045 802 7857

Furini Antonella

symbol email antonella.furini@univr.it symbol phone-number 045 802 7950; Lab: 045 802 7043

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Guardavaccaro Daniele

symbol email daniele.guardavaccaro@univr.it symbol phone-number +39 045 802 7903

Lampis Silvia

symbol email silvia.lampis@univr.it symbol phone-number 045 802 7095

Molesini Barbara

symbol email barbara.molesini@univr.it symbol phone-number 045 802 7550

Pandolfini Tiziana

symbol email tiziana.pandolfini@univr.it symbol phone-number 045 802 7918

Perduca Massimiliano

symbol email massimiliano.perduca@univr.it symbol phone-number +39 045 802 7984

Romeo Alessandro

symbol email alessandro.romeo@univr.it symbol phone-number +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

symbol email barbara.simonato@univr.it symbol phone-number +39 045 802 7832; Lab. 7960

Speghini Adolfo

symbol email adolfo.speghini@univr.it symbol phone-number +39 045 8027900

Torriani Sandra

symbol email sandra.torriani@univr.it symbol phone-number 045 802 7921

Ugel Stefano

symbol email stefano.ugel@univr.it symbol phone-number 045-8126451
Foto personale,  July 18, 2012

Vallini Giovanni

symbol email giovanni.vallini@univr.it symbol phone-number 045 802 7098; studio dottorandi: 045 802 7095

Vettori Andrea

symbol email andrea.vettori@univr.it symbol phone-number 045 802 7861/7862

Vitulo Nicola

symbol email nicola.vitulo@univr.it symbol phone-number 0458027982

Zapparoli Giacomo

symbol email giacomo.zapparoli@univr.it symbol phone-number +390458027047

Zipeto Donato

symbol email donato.zipeto@univr.it symbol phone-number +39 045 802 7204

Zoccatelli Gianni

symbol email gianni.zoccatelli@univr.it symbol phone-number +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00091

Credits

9

Coordinatore

Michael Assfalg

Language

Italian

Scientific Disciplinary Sector (SSD)

CHIM/06 - ORGANIC CHEMISTRY

The teaching is organized as follows:

teoria

Credits

7

Period

II semestre

Academic staff

Michael Assfalg

laboratorio [laboratorio 1° turno]

Credits

2

Period

II semestre

Academic staff

Mariapina D'Onofrio

laboratorio [laboratorio 2° turno]

Credits

2

Period

II semestre

Academic staff

Mariapina D'Onofrio

laboratorio [laboratorio 3° turno]

Credits

2

Period

II semestre

Academic staff

Michael Assfalg

laboratorio [laboratorio 4° turno]

Credits

2

Period

II semestre

Academic staff

Michael Assfalg

Learning outcomes

This course aims to provide students with knowledge of basic organic chemistry and the main organic reactions in preparation for subsequent courses typical of an undergraduate degree in Biotechnology. The course focuses on the recognition of the various classes of compounds and their reactivity, an essential knowledge for understanding the organization of biological systems and for the development of biotechnological applications designed to modify their function.

The student will acquire laboratory skills through a series of exercises concerning purification, synthesis and characterization of compounds. Students get acquainted with experimental procedures and techniques, and learn to critically evaluate the outcome of the conducted experimentation.

Program

------------------------
MM: teoria
------------------------
Introduction to organic chemistry: organic chemistry in today’s life. The chemical bond. The molecular geometry. Concepts of acid and base and redox reactions. Resonance. Electronegativity, bonds and chemical reactivity. Intermolecular forces.

Introduction to organic reactions and their mechanisms: thermodynamic relations. Energy diagrams. Kinetics of a reaction; rate and order of a reaction. Homolysis and heterolysis of covalent bonds. Carbocations and carbanions and relative stability. Acidic or basic character of the various functional groups. Effect of changes in structure on acidity and basicity. Inductive effect and resonance. Definition of electrophilic and nucleophilic reagents. Concept of regio- and stereo-selectivity of an organic reaction.

Alkanes and Cycloalkanes: structure and IUPAC nomenclature, alkyl radicals. Structural isomers. Isomerism and physical properties. Conformational isomerism: definition and examples via energy diagrams (ethane and butane). The cycloalkanes: relative stability and strain. Cyclopentane and cyclohexane. Conformation of cyclohexane and substituted cyclohexanes: axial and equatorial hydrogens, the cis/trans stereoisomerism. Conformational analysis.

Stereochemistry: constitutional isomers and stereoisomers. Enantiomers and diastereoisomers. Chirality Relations between configurational stereoisomers: enantiomers and racemates. Polarized light and optical activity. Representation rules of chiral compounds (R, S or D, L). Projective structures of Fisher. Compounds with multiple stereocenters: diastereoisomers and mesoforms. Stereoisomerism in cyclic compounds: configurations and conformations. Resolution of a racemate. The stereoisomerism of cyclic compounds.

Alkenes and alkynes: IUPAC nomenclature; vinyl and allyl groups. Geometric isomerism and physical-chemical properties; stability of alkenes with different substitution. Reactivity: electrophilic additions of halogen acid, water, , halogen. Mechanism, stereochemistry and kinetics of the reactions, Markovnikov's rule. The formation of halohydrins. Oxidation of double bonds. Hydrogenation reaction: catalysis, stereoselectivity of the hydrogenation reaction. Alkynes: definitions and nomenclature; acidity of alkynes. Electrophilic additions to the triple bond, mechanism and regioselectivity. Hydrogenation of the triple bond. Addition of water: reaction products. Main methods of synthesis of alkenes and alkynes.

Nucleophilic substitution and elimination at saturated carbon: kinetics and mechanism of SN1 and SN2 reactions; competition between the two mechanisms; stereochemistry of reactions. Comparisons between various nucleophiles. Steric effect, polarizability. Solvents in substitution reactions. Leaving groups. Elimination reactions: kinetics and mechanism of reactions E1 and E2; regioselectivity and stereochemistry. Competition between substitution and elimination reactions. The chemistry of alkyl halides: preparation and reactivity.

Alcohols, ethers and epoxides: structure and nomenclature; physico-chemical properties of alcohols and ethers. Preparation of alcohols. The reactions of alcohols. Conversion of alcohols to alkyl halides. Preparation of ethers (Williamson synthesis). Reaction of halohydrins for the preparation of epoxides (intramolecular nucleophilic substitution). Rupture of the ether bond. Opening of epoxides.

Aldehydes and ketones: a carbonyl group, its structure and reactivity towards electrophilic and nucleophilic reagents. Nomenclature and physical properties of aldehydes and ketones. Main methods of synthesis of aldehydes and ketones. Nucleophilic addition reaction: formation of hemiacetal and acetal, imines and enamines. Reactions with Grignard reagents. Carbonyl compounds as acids and bases (enols and enolates, tautomerism). Aldol condensation reactions. Regioselective formation of enolates. The conjugated unsaturated systems: the allyl cation: forms of resonance and stability. Conjugated dienes and their stability. The electrophilic attack to conjugated dienes: 1,2 and 1,4 addition.

The chemistry of aromatic compounds: benzene, Kekulé structures, aromaticity in arenes and heterocyclic compounds. Huckel rule. Nomenclature and properties of aromatic compounds: halides, carboxylic acids, phenols, amines, aromatics polycondensated. Reaction of aromatic electrophilic substitution (nitration, halogenation, sulfonation, Friedel-Crafts reactions): mechanism and kinetic data. Orientation in the substitution reaction of rings with a substituent. Activating and deactivating groups, orientation in the substitution. Substitution on rings with more than one substituent.

Carboxylic acids and their derivatives: properties of the carboxyl group. Acidity. Nomenclature and physical-chemical properties. Preparation of carboxylic acids. Transformation of carboxylic acids in the major derivatives: halides, anhydrides, amides and esters. Reactivity of the carboxylic group: nucleophilic addition-elimination of carbon acyl. Preparation of acid chlorides and anhydrides. Preparation of esters: the mechanism of the reaction esterification of Fisher. Hydrolysis of acid derivatives. The β-dicarbonyl compounds: the Claisen condensation.

Amines: structure. Nomenclature and physical-chemical properties. Basicity. Heterocyclic compounds: nomenclature. Heterocyclic aromatic compounds. Nitrogen heterocycles: pyrrole and pyridine. Basicity of pyrrole and pyridine. Nucleotides and nucleic acids.

Carbohydrates: structure and distribution. Stereochemistry of sugars. Fischer projection. Determination of the absolute configuration. The mutarotation. Reaction of formation of hemiacetals: cyclic structures of monosaccharides. Haworth formulas. Anomeric effect. Formation of glycosides. Oxidation reactions of monosaccharides: oxidation with Benedict's reagent and Tollens. Reducing sugars. Reduction to alditols. Main monosaccharides: glucose and fructose. Disaccharides lactose, maltose and sucrose. Polysaccharides: starch and cellulose.

Lipids: waxes, fats, oils, soaps, fosfolipid, eicosanoids, terpenoids, steroids.

Amino acids and peptides: structure, properties and stereochemistry. Classification of amino acids present in proteins. Amino acids such as acids and bases. Determination of the structure of the peptides: primary, secondary, tertiary and quaternary. Degradation of proteins into peptides and amino acids: acid hydrolysis, enzymatic degradation.

------------------------
MM: laboratorio
------------------------
The practical experiences include key issues for an organic chemistry laboratory, for example, methods of purification by crystallization, separation of a three-component mixture with different acid-base properties, identification of compounds through the melting point, simple chemical reactions, purification by distillation , recognition of carbohydrates essays, introduction to polarimetry and spectroscopy nods for molecular analysis.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
teoria McMurry Chimica organica PICCIN  
teoria Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276
teoria John McMurry Fondamenti di Chimica Organica (Edizione 3) Zanichelli   8808075397
teoria J. G. Smith Fondamenti di chimica organica, 3/e (Edizione 3) McGraw Hill 2018
teoria Brown Poon Introduzione alla chimica organica (Edizione 5) EdiSES 2014 9788879598255
laboratorio McMurry Chimica organica PICCIN  
laboratorio Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276
laboratorio John McMurry Fondamenti di Chimica Organica (Edizione 3) Zanichelli   8808075397
laboratorio McMurry Chimica organica PICCIN  
laboratorio Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276
laboratorio John McMurry Fondamenti di Chimica Organica (Edizione 3) Zanichelli   8808075397
laboratorio Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276
laboratorio Bruice Elementi di chimica organica (Edizione 2) EdiSES 2017 9788879599276

Examination Methods

------------------------
MM: teoria
------------------------
The exam consists of a written verification of the level of knowledge on organic chemistry and the ability to apply the basic principles to specific cases. The student will be asked to properly represent molecules using standard conventions, recognize isomerism, identify the reactive groups and develop reaction mechanisms.
------------------------
MM: laboratorio
------------------------
For each laboratory experience, the student will be requested to write a brief report on the results and a critical commentary. Understanding of practical experiences will be verified through questions included in the written test of the theoretical course.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti