Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2019/2020

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione estiva di laurea Jul 17, 2020 Jul 17, 2020
Sessione autunnale di laurea Oct 13, 2020 Oct 13, 2020
Sessione autunnale di laurea - Dicembre Dec 9, 2020 Dec 9, 2020
Sessione invernale di laurea Mar 10, 2021 Mar 10, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M N P R S T U V Z

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Badino Massimiliano

massimiliano.badino@univr.it +39 045 802 8459

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bellin Diana

diana.bellin@univr.it 045 802 7090

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Bolzonella David

david.bolzonella@univr.it 045 802 7965

Boscaini Maurizio

maurizio.boscaini@univr.it

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Frison Nicola

nicola.frison@univr.it 045 802 7965

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Guardavaccaro Daniele

daniele.guardavaccaro@univr.it +39 045 802 7903

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Marino Valerio

valerio.marino@univr.it 0458027227

Molesini Barbara

barbara.molesini@univr.it 045 802 7550

Munari Francesca

francesca.munari@univr.it +39 045 802 7906

Nardon Chiara

chiara.nardon@univr.it

Pandolfini Tiziana

tiziana.pandolfini@univr.it 045 802 7918

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

barbara.simonato@univr.it +39 045 802 7832; Lab. 7960

Speghini Adolfo

adolfo.speghini@univr.it +39 045 8027900

Torriani Sandra

sandra.torriani@univr.it 045 802 7921

Ugel Stefano

stefano.ugel@univr.it 045-8126451
Foto personale,  July 18, 2012

Vallini Giovanni

giovanni.vallini@univr.it 045 802 7098; studio dottorandi: 045 802 7095

Vettori Andrea

andrea.vettori@univr.it 045 802 7861/7862

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Zapparoli Giacomo

giacomo.zapparoli@univr.it +390458027047

Zenoni Sara

sara.zenoni@univr.it 045 802 7941

Zipeto Donato

donato.zipeto@univr.it +39 045 802 7204

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English B1
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00279

Credits

6

Coordinatore

Giovanni Vallini

Scientific Disciplinary Sector (SSD)

BIO/19 - MICROBIOLOGY

Language

Italian

The teaching is organized as follows:

teoria

Credits

4

Period

I semestre

Academic staff

Giovanni Vallini

laboratorio [1° turno]

Credits

2

Period

I semestre

Academic staff

Silvia Lampis

laboratorio [2° turno]

Credits

2

Period

I semestre

Academic staff

Silvia Lampis

Learning outcomes

THEORETICAL LECTURES
The course is designed to introduce students to the basic knowledge of the microbial world as well as to illustrate the main methodological tools for research in microbiology, with a detailed comparison of the properties among the different type of microorganisms, both prokaryotes and eukaryotes, including bacteria, archaea, yeasts, filamentous fungi, and - in a distinct section, since non-cellular organisms – the viruses. During the first series of lectures, general themes will be addressed such as morphological and functional diversity, genetic, biochemical and metabolic features, evolutionary aspects and ecology of microorganisms, including how they interact with specific environmental factors. In the second series of lectures, microorganisms will be discussed as reference systems for fundamental studies dealing with molecular biology as well as biochemistry and metabolic regulatory mechanisms. Also elements will be provided about the methods for microbe cultivation and on strategies for the control of microbial growth and the conditioning of the metabolism. The third part of lectures will cover the detailed study of particularly important microbial groups to be defined with the Students.

LABORATORY PRACTICES
This laboratory module is designed to guide students in the acquisition of techniques and in the development of manipulative skills all necessary for the identification and the study of both structural and functional characteristics of the microorganisms of interest, as well as for a proper handling of microbial cultures within research activities. The main objective of the module is to provide students with the basic tools, represented by traditional analytical procedures in microbiology, but also with the knowledge of advanced techniques, based on molecular methods of investigation, useful for basic research but even the definition of the correct approach to issues related to the many themes of applied microbiology.


Program

CONTENTS of THEORETICAL LECTURES
1. MICROBIAL EVOLUTION AND DIVERSITY: Origin and Evolution of the Microbial Life; Bacteria; Archaea; Eukaryotic Cell and Eukaryotic Microorganisms; Microbial Taxonomy and Systematics. 2. PRINCIPLES OF MICROBIOLOGY: Cell Structure and Function in Bacteria, Archaea and Fungi (Yeast and Moulds); 3. MICROBIAL GROWTH: Microbial Nutrition, Culture and Growth Aspects; Antimicrobial Agents and Microbial Growth Control. 4. METABOLIC DIVERSITY: Phototrophy and autotrophy (purple sulfur and nonsulfur bacteria, green sulfur and nonsulfur bacteria, cyanobacteria), Aerobic (EMP pathway, Enther-Doudoroff pathway, Hexose Monophosphate Shunt + electron transport chain and proton motive force generation) and Anaerobic Respiration (denitrification, dissimilative sulfate reduction, acetogenesis, methanogenesis), Fermentations (homolactic and heterolactic, mixed-acid, butane-diol, propionic, butanol/acetone fermentations), Chemolithotrophy (hydrogen oxidizing, sulfur oxidizing, iron oxidizing, ammonia/nitrite oxidizing bacteria, anammox process); Other biosyntheses (ammonia assimilation, nitrogen fixation). 5. VIRAL DIVERSITY: Overview of Different Viral Groups; Bacteriophages. 6. BACTERIAL GENETICS: Mutations; Genetic Recombination: Transformation, Conjugation, Transduction. 7. MOLECULAR BIOLOGY AND GENE EXPRESSION Molecular Biology of Bacteria: Cloning Vectors and Expression Vectors; Regulation of Gene Expression. 8. MICROBIAL ECOLOGY: Methods in Microbial Ecology; Major Microbial Habitats and Diversity; Nutrient Cycles; Microbial Symbioses. 9. FOCUS ON SPECIFIC MICROBIAL GROUPS (Methylotrophs and Methanotrophs, Pseudomonadales, Enteric Bacteria, Myxobacteria, both nonsporulating and endospore-forming Firmicutes, Methanogens, moulds and yeasts).

LABORATORY PRACTICES
[A] Basic laboratory techniques for isolation, cultivation, observation and enumeration of microorganisms. 1. Preparation of liquid and agarized culture media (rich and defined media); 2. Culture trasfer techniques and procedures for isolation in pure culture; 3. Enumeration of microbial populations from a complex matrix (e.g. soil, wastewater, compost): i) serial dilution-agar plate procedure and total count of CFUs (Colony Forming Units), ii) MPN (Most Probable Number) method; 4. Microbial staining and use of the compound microscope: i) simple staining, ii) Gram differential staining, iii) acid-fast staining, iv) spore staining.
[B] Characterization of a bacterial isolate from streak-plate procedure with direct complex matrix inoculation. 1. Classic culture-dependent protocols: (a) Microbial growth evaluation in liquid, agarized and slant cultures – (b) Motility tests: i) direct optical microscope observation, ii) recognition in soft agar tube – (c) Biochemical tests: i) sugar fermentation/oxidation, ii) catalase test, iii) oxidase test, iv) nitrate reduction test, v) urease test – (d) Growth in defined liquid medium added with different C substrates: OD measurement at 600 nm; 2. Molecular methods: (a) Total DNA extraction from liquid culture: i) DNA detection by means of agarose gel electrophoresis, ii) DNA quantification on BioPhotometer through analysis of 260/280 and 260/320 ratios – (b) PCR amplification of the 16S rRNA gene sequence – (c) ARDRA (Amplified Ribosomal DNA Restriction Analysis) protocol and observation of digestion profiles by agarose gel electrophoresis – (d) BOX-PCR analysis and observation of BOX profiles by agarose gel electrophoresis – (e) Selection by each Student Group of a specific bacterial isolate (on the basis of ARDRA and BOX profiles as well as of results from classic analytical methods) to be considered for sequencing after elution and quantification of the corresponding 16S rRNA gene sequence – (f) Analysis of the obtained 16S rRNA gene sequence by comparison with genetic sequence data banks: i) NCBI; ii) Ez-Taxon.

Examination Methods

Final assignment of course credit by written examination. The test consists in the submission to the student of a multi-page form containing 20 to 25 quizzes, including single answer questions, multiple answer questions, calculation exercises, request of short comments and descriptions. Each question is given a different weight in points. The rating is in thirtieths, based on the percentage of points totalized with the answers correctly provided, also taking into account the score attributed to the laboratory report.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
teoria Gianni Dehò e Enrica Galli (a cura di) Biologia dei Microrganismi (Edizione 3) Casa Editrice Ambrosiana 2018 978-8-808-18623-2
teoria Michael Madigan, John Martinko, Kelly Bender, Daniel Buckley, David Stahl BROCK Biologia dei microrganismi - Microbiologia generale, ambientale e industriale (Edizione 1) Pearson Italia 2016 889190094X
teoria Michael T. Madigan, John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl Brock Biology of Microorganisms - 14th Edition (Edizione 14) Pearson 2015 978-0-321-89739-8

Type D and Type F activities

I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
Python programming language D Maurizio Boscaini (Coordinatore)
Model organism in biotechnology research D Andrea Vettori (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Gestione carriere


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.