Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2013 | Jan 31, 2014 |
II semestre | Mar 3, 2014 | Jun 13, 2014 |
Session | From | To |
---|---|---|
Sessione straordinaria | Feb 3, 2014 | Feb 28, 2014 |
Sessione estiva | Jun 16, 2014 | Jul 31, 2014 |
Sessione autunnale | Sep 1, 2014 | Sep 30, 2014 |
Session | From | To |
---|---|---|
Sessione autunnale | Oct 9, 2013 | Oct 9, 2013 |
Sessione straordinaria | Dec 12, 2013 | Dec 12, 2013 |
Sessione invernale | Mar 12, 2014 | Mar 12, 2014 |
Sessione estiva | Jul 16, 2014 | Jul 16, 2014 |
Period | From | To |
---|---|---|
Vacanze Natalizie | Dec 22, 2013 | Jan 6, 2014 |
Vacanze di Pasqua | Apr 17, 2014 | Apr 22, 2014 |
Festa del S. Patrono S. Zeno | May 21, 2014 | May 21, 2014 |
Vacanze Estive | Aug 11, 2014 | Aug 15, 2014 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Cecchi Franco

Maris Bogdan Mihai

Monaco Ugo Luigi
Spena Angelo
Ugolini Simone

Vallini Giovanni
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2014/2015
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2015/2016
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Physical Chemistry (2014/2015)
Teaching code
4S00097
Credits
6
Coordinatore
Language
Italian
Scientific Disciplinary Sector (SSD)
CHIM/02 - PHYSICAL CHEMISTRY
The teaching is organized as follows:
teoria
Credits
5
Period
II sem.
Academic staff
Ugo Luigi Monaco
laboratorio [1° turno]
Credits
1
Period
II sem.
Academic staff
Ugo Luigi Monaco
laboratorio [2° turno]
Credits
1
Period
II sem.
Academic staff
Ugo Luigi Monaco
Learning outcomes
The Physical Chemistry course for the degree program in Biotechnology is aimed at the development of the necessary abilities to quantitatively describe the macroscopic properties of chemical systems, specially of those of interest to the biologist. The use of a textbook in English is another important aspect of great importance.
Program
Thermodynamics. Introduction. Description of a macroscopic system. State variables. Definition of the state of a system. Process. Heat and work. Work in the expansion of a gas. Other types of work. Mathematical description of a system with one or more independent variables. First law of Thermodynamics. Exaples of calculations using the first law. Molecular interpretation of energy variations.
Enthalpy and heat capacity. Measurement and calculation of enthalpy variations. Thermochemistry. Molecular interpretation of enthalpy variations. Cooperative processes. Thermodytnamic properties of water. Biological significance. Second law of Thermodynamics. Spontaneous processes. Entropy. Calculation of entropy veriations for some important processes. Molecular interpretation of entropy. Third law of Thermodynamics. Residual entropy.Examples of calculations. The Gibbs and Helmholtz free energies. The free energy spontaneity criterion. Physical meaning of the Gibbs and Helmholtz free energies. Chemical potential. Physical meaning. Chemical equilibrium. Equilibrium constant. Methods used to calculate and measure the free energy variations of chemical reactions.Influence of the temperature. Van't Hoff's equation. Biochemical examples. Denaturation of proteins. The hydriphobic effect. Phase equilibria. The phase ruler. The Clausius-Clapeyron equation. Phase transitions in biological systems. Other examples of biological applications of Thermodynamics.
Chemical and Biochemical kinetics. An introduction to chemical kinetics and its methods. Reaction mechanisms. The relationship between rate constant and equilibrium constant. The principle of microscopic reversibility. The determination of a reaction mechanism. The rate law. Methods. Integration of the rate laws. Examples: radioactive decay and DNA renaturation. Reaction profile and reaction coordinates. Arrhenius theory: activation energy and frequency factor. Eyring’st heory. Free energy of activation. Experimental methods. Enzyme kinetics. The Michaelis-Menten model. Plotting the data with the Eadie and Lineweaver-Burk methods. Application of Eyring’s theory to enzymes. Factors that influence the catalytic activity of enzymes. The transition state.
Recommended textbooks
1) Eisenberg, D. and Crothers, D. Physical Chemistry with applications to the Life Sciences. Benjamin/Cummings Publishing Company.Menlo Park, California, U.S.A. 1979.
2) Atkins P. e De Paula J. Physical Chemistry for the Life sciences Oxford University Press, Oxford, U.K. 2006.
Examination Methods
Written and oral examination. The first part consist in solving between 5 and 10 problems of the type discussed in class. The oral examination is given on the following day and covers the topics discused in class.
Teaching materials e documents
-
Adams (en, 1958 KB, 29/04/15)
-
Cosa farà ogni gruppo (it, 70 KB, 08/05/15)
-
Laboratorio 2015 (it, 413 KB, 29/04/15)
-
Oelke (en, 919 KB, 29/04/15)
-
Ramette (en, 1707 KB, 29/04/15)
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Graduation
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. | Various topics |
Risposte trascrittomiche a sollecitazioni ambientali in vite | Various topics |
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite | Various topics |
Attendance
As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module.
Please refer to the Crisis Unit's latest updates for the mode of teaching.