Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione estiva di laurea Jul 16, 2021 Jul 16, 2021
Sessione autunnale di laurea Oct 11, 2021 Oct 11, 2021
Sessione autunnale di laurea - Dicembre Dec 6, 2021 Dec 6, 2021
Sessione invernale di laurea Mar 9, 2022 Mar 9, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021
Vacanze estive Aug 9, 2021 Aug 15, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M P R S T U V Z

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Avesani Linda

linda.avesani@univr.it +39 045 802 7839

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bellin Diana

diana.bellin@univr.it 045 802 7090

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Bolzonella David

david.bolzonella@univr.it 045 802 7965

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Capuani Rossana

rossana.capuani@univr.it

Cazzaniga Stefano

stefano.cazzaniga@univr.it +39 045 8027807

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Chiurco Carlo

carlo.chiurco@univr.it +390458028159

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Fiammengo Roberto

roberto.fiammengo@univr.it 0458027038

Frison Nicola

nicola.frison@univr.it 045 802 7965

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Guardavaccaro Daniele

daniele.guardavaccaro@univr.it +39 045 802 7903

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Marino Valerio

valerio.marino@univr.it 0458027227

Munari Francesca

francesca.munari@univr.it +39 045 802 7906

Pandolfini Tiziana

tiziana.pandolfini@univr.it 045 802 7918

Pezzotti Mario

mario.pezzotti@univr.it +39045 802 7951

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

barbara.simonato@univr.it +39 045 802 7832; Lab. 7960

Speghini Adolfo

adolfo.speghini@univr.it +39 045 8027900

Tomazzoli Claudio

claudio.tomazzoli@univr.it

Torriani Sandra

sandra.torriani@univr.it 045 802 7921

Ugel Stefano

stefano.ugel@univr.it 045-8126451

Vettori Andrea

andrea.vettori@univr.it 045 802 7861/7862

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Zaccone Claudio

claudio.zaccone@univr.it +39 045 8027864

Zapparoli Giacomo

giacomo.zapparoli@univr.it +390458027047

Zenoni Sara

sara.zenoni@univr.it 045 802 7941

Zipeto Donato

donato.zipeto@univr.it +39 045 802 7204

Zivcovich Franco

franco.zivcovich@univr.it

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English B1 level
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00097

Credits

6

Coordinatore

Adolfo Speghini

Scientific Disciplinary Sector (SSD)

CHIM/02 - PHYSICAL CHEMISTRY

Language

Italian

The teaching is organized as follows:

teoria

Credits

5

Period

II semestre

Academic staff

Adolfo Speghini

laboratorio [1° turno]

Credits

1

Period

II semestre

Academic staff

Adolfo Speghini

laboratorio [2° turno]

Credits

1

Period

II semestre

Academic staff

Adolfo Speghini

Learning outcomes

THEORY: the Course aims to provide the students with the basic tools for understanding and interpreting chemico-physical phenomena concerning systems of biological and biotechnological interest, also through the use of theoretical models. The student will acquire the ability to apply chemical-physical concepts to real processes in order to quantify observables, of thermodynamic, transport, kinetic and spectroscopic type. Some example cases on various physical-chemical aspects will be considered in order to familiarize the student with solution of real problems. LABORATORY: the course also includes some laboratory experiences to provide manual skills and critical skills in dealing with real chemico-physical problems, as well as providing knowledge on modern methods and equipment for the measurement of thermodynamic variables, kinetic constants, colloidal properties as well as for studying electronic and vibrational properties of molecules.

Program

THEORY

Thermodynamics.
Perfect and real gases. Concepts of heat and work. Heat capacity.
Internal energy, enthalpy and their variations with temperature.
Enthalpy of phase transition. Enthalpy of reaction and its variation with temperature.
Entropy and its variation with temperature. Entropy of phase transition. Overview on the statistical interpretation of entropy. Entropy of reaction.
Gibbs free energy and its variation with pressure and temperature. Stability condition and phase diagrams. Definition of chemical potential. Chemical potential of components of gas mixtures. Entropy and free energy of mixing for gaseous mixtures.
Chemical potential of components od ideal and real solutions. Free energy of mixing for ideal fluids.
Free energy of reaction. Equilibrium and equilibrium constant. Variation of the equilibrium constant with the temperature.

Chemical kinetics.
The rate of reactions. Rate law and order of reaction. Arrhenius equation. Transition state and activation energy. Determination of kinetic laws.
Approach to equilibrium and relaxation. Reaction mechanism. Consecutive reactions. Steady state approximation. Pre-equilibrium. Rate Determining Step. Chemical reactions controlled by diffusion or activation. Kinetic and thermodynamic control of a chemical reaction.

Atomic and molecular energy structure. Molecular spectroscopies.
Introduction to quantum theory. Particles in confined systems. Harmonic oscillator and molecular vibrational modes. Atomic structure. Hydrogen-like atoms. Spin. Pauli exclusion principle.
Valence bond and molecular orbitals. Electronic spectroscopy in the UV and visible regions. Circular dichroism. Decay of the excited states. Radiative and non-radiative transitions. Fluorescence and quenching. Phosphorescence. Vibrational spetroscopy.
Principles of Nuclear Magnetic Resonance spectroscopy (NMR).
Basics on Boltzmann distribution.

Colloids.
Colloidal dispersions and their stability. Examples of colloids of biological importance. Overview of nanostructured systems.
Hydrodynamic diameter and Zeta potential for colloids and their measurements with Dynamic Light Scattering (DLS) technique.


LABORATORY EXPERIENCES

1) Evaluation of the thermal capacity of a calorimeter and neutralization reaction enthalpy through calorimetric measurements;

2) Determination of the kinetic parameters for the reaction of hydrogen peroxide with iodine ion in acidic solution.

3) Study of spectroscopic transitions of fluorescine in the visible region through measurement and analysis of absorption and fluorescence spectra; fluorescence quenching of fluorescein with iodide ion; investigation on the quenching mechanism;

4) FTIR spectrometer and interpretation of infrared spectra of simple molecules. NMR spectrometer and interpretation of NMR spectra of simple molecules. DLS instrumentation for measuring the hydrodynamic diameter and Zeta potential of colloids.

Examination Methods

The oral examination will include all the topics of the Course about the theoretical part as well as the examples, exercises and laboratory experiences. Particular attention will be devoted on the Physical Chemistry concepts and the knowledge of the methods, tools and techniques used in laboratory experiences.
For both attending and not attending students the oral examination will cover all the topics discussed in the theoretical part, in the examples and exercises as well as in the laboratory experiences.
Written reports about the the laboratory experiences are required, describing the principles, the used experimental methods and the results obtained during the lab experiences. The reports have to be loaded to the Moodle platform as soon as the lab experiences will be completed.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
teoria Peter Atkins, Julio de Paula, James Keeler Chimica Fisica (Edizione 6) Zanichelli 2020 9788808620521
teoria Peter Atkins, Julio de Paula Elementi di Chimica Fisica (Edizione 4) Zanichelli 2018 9788808220684
teoria Thomas Engel Philip Reid Physical Chemistry: Quantum Chemistry and Spectroscopy (Edizione 4) Pearson 2019 9780134804590
teoria Thomas Engel, Philip Reid Physical Chemistry: Thermodynamics, Statistical Thermodynamics, and Kinetics (Edizione 4) Pearson 2019 9780134804583
laboratorio Speghini Adolfo Dispense per esercitazioni di laboratorio di Chimica Fisica (Edizione 1) 2019

Type D and Type F activities

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
Model organism in biotechnology research D Andrea Vettori (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
Python programming language D Vittoria Cozza (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: chemistry and biology D Not yet assigned
Subject requirements: basic mathematics and physics D Not yet assigned
LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.