Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2019/2020

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione estiva di laurea Jul 17, 2020 Jul 17, 2020
Sessione autunnale di laurea Oct 13, 2020 Oct 13, 2020
Sessione autunnale di laurea - Dicembre Dec 9, 2020 Dec 9, 2020
Sessione invernale di laurea Mar 10, 2021 Mar 10, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M N P R S T U V Z

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Badino Massimiliano

massimiliano.badino@univr.it +39 045 802 8459

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bellin Diana

diana.bellin@univr.it 045 802 7090

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Bolzonella David

david.bolzonella@univr.it 045 802 7965

Boscaini Maurizio

maurizio.boscaini@univr.it

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Frison Nicola

nicola.frison@univr.it 045 802 7965

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Guardavaccaro Daniele

daniele.guardavaccaro@univr.it +39 045 802 7903

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Marino Valerio

valerio.marino@univr.it 0458027227

Molesini Barbara

barbara.molesini@univr.it 045 802 7550

Munari Francesca

francesca.munari@univr.it +39 045 802 7906

Nardon Chiara

chiara.nardon@univr.it

Pandolfini Tiziana

tiziana.pandolfini@univr.it 045 802 7918

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

barbara.simonato@univr.it +39 045 802 7832; Lab. 7960

Speghini Adolfo

adolfo.speghini@univr.it +39 045 8027900

Torriani Sandra

sandra.torriani@univr.it 045 802 7921

Ugel Stefano

stefano.ugel@univr.it 045-8126451
Foto personale,  July 18, 2012

Vallini Giovanni

giovanni.vallini@univr.it 045 802 7098; studio dottorandi: 045 802 7095

Vettori Andrea

andrea.vettori@univr.it 045 802 7861/7862

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Zapparoli Giacomo

giacomo.zapparoli@univr.it +390458027047

Zenoni Sara

sara.zenoni@univr.it 045 802 7941

Zipeto Donato

donato.zipeto@univr.it +39 045 802 7204

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English B1
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00004

Credits

6

Coordinatore

Alessandro Romeo

Scientific Disciplinary Sector (SSD)

FIS/07 - APPLIED PHYSICS

Language

Italian

The teaching is organized as follows:

teoria

Credits

5

Period

II semestre

Academic staff

Alessandro Romeo

esercitazioni

Credits

1

Period

II semestre

Academic staff

Alessandro Romeo

Learning outcomes

The Physics lectures aim to give a basic knowledge of the whole physics of mechanics and electromagnetism, enough for the understanding of physical phenomena in biotechnology and in life science. The lectures will have a strong applicative part with exercises in class in order to ease the comprehension of the theoretical concepts and to develop the ability in problem solving.

Program

Index:

1. Vectors, physical quantities, approximations
2. Motion in one dimension
3. Motion in two dimensions
4. Newton Laws
5. Energy
6. Momentum
7. Rotational motion
8. Gravity laws
9. Oscillation laws
10. Fluid Mechanics
11. Hints of Thermodynamics
11. Electric Field
12. Electric potential
13. Electric circuits
14. Charges in motion: electromagnetism
15. Magnetism

Detailed program:

-Introduction to vectors
Dimensional analysis, unit conversion, coordinate systems, trigonometry, vector and scalar quantities, scalar product, vector sum, vector product: graphical method and analytical method.

-Motion
Average speed and instantaneous speed, hints on derivatives, constant speed, average acceleration and instantaneous acceleration, falling bodies, carriers position-velocity-acceleration, projectile motion, particle in uniform circular motion, radial and tangential acceleration, relative velocity and reference systems.

-Newton's laws
Concept of Force, Newton's first law, the concept of mass, Newton's second law-resultant force, gravitational force and weight, Newton's third law, static friction and kinetic friction, uniform circular motion and Newton's law, notes on the fundamental forces) , conservative and dissipative forces.

-Energy and energy transfer
Concept of Work, work done by a constant force, work done by a variable force, the concept of kinetic energy, non-isolated systems, dynamic friction and work, potential energy, isolated systems, the concept of conservative force, potential energy from the gravitational force, theorem kinetic energy

-Quantity Momentum and impact
Momentum and its conservation, the concept of momentum, elastic collision and inelastic collision, collisions in two dimensions, the center of mass motion of a particle system.

- The rotational motion
Position, velocity and angular acceleration, concept of rigid body, rigid body in constant rotation, rigid body in constant acceleration, rotational and translational quantities, concept of rotational kinetic energy, the concept of torque, call the vector product, rigid body and resultant moment of forces, levers, definition of angular momentum, conservation of angular momentum, rolling of rigid bodies, rotational kinetic energy.

-Gravity
Outline of Kepler's laws, escape velocity, circular and elliptical orbit.

-The oscillatory motion
Particle attached to a spring, simple harmonic motion, Hooke's law, energy in a harmonic motion and soft, simple pendulum and nods of compound pendulum, damped oscillations.

- Fluid Mechanics
Concept of pressure, pressure and depth, pressure measurements, Archimedes' principle, the law of Pascal, ideal fluid, fluid dynamics and continuity equation of fluid flow, Bernoulli's theorem, viscous fluid.

- Thermodynamics
Concept of temperature, thermal expansion, concept of heat, ideal gas law, hints of statistical thermodynamics, thermodynamic transformations, entropy.

-Electric Force and electric fields
Properties of electric charges, insulators and conductors, the concept of charge, Coulomb's law, electric force, the concept of field, electric field, electric field lines, the concept of electric dipole, motion of charged particles in a uniform electric field, electrical flow, Gauss theorem (with proof), application of Gauss theorem (various examples), conductors in electrostatic equilibrium.

- Electric potential
Potential difference and electric potential, the potential difference in a uniform electric field, electric potential energy, potential in a non-uniform electric field, electric potential and electric field, electric potential of a charged conductor, capacity concept, capacitors, connection of capacitors , energy of a charged capacitor.

-Current and electric circuits
Introduction to electric current, the concept of electrical resistance, Ohm's law, resistors in series and parallel, Kirchoff's laws, Joule's law.

-Elettromagnetism
Introduction to the magnetic field, charged particle in a uniform magnetic field, magnetic force, the Lorentz force, Read Maxwell.

Examination Methods

The exam is written, with a number of exercises to be solved (typically from 5 to 7) following the lectures' program and similar to those that are presented in class.

The professor reserves the possibility to add an oral exam, in particular in the case where the student is very close to the sufficiency without obtaining it, or in case there is any doubt about the actual evaluation of the student or even in the case where there is doubt or suspicion that the student has copied.

For laude an excellent presentation of the exam solutions is compulsory.

Examination methods are not differentiated between attending and not-attending students.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
teoria Jewett & Serway Principi di Fisica vol.1 (Edizione 4) Edises 2008 978-88-7959-419-6
esercitazioni Jewett & Serway Principi di Fisica vol.1 (Edizione 4) Edises 2008 978-88-7959-419-6

Type D and Type F activities

I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
Python programming language D Maurizio Boscaini (Coordinatore)
Model organism in biotechnology research D Andrea Vettori (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.