Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2017/2018

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 11, 2018 Jul 11, 2018
Sessione autunnale Nov 21, 2018 Nov 21, 2018
Sessione di laurea invernale Mar 13, 2019 Mar 13, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
VACANZE ESTIVE Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D E F G L M P R S T U V Z

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bellin Diana

diana.bellin@univr.it 045 802 7090

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Bolzonella David

david.bolzonella@univr.it 045 802 7965

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Erle Giorgio

giorgio.erle@univr.it +39 045802 8688

Frison Nicola

nicola.frison@univr.it 045 802 7965

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Molesini Barbara

barbara.molesini@univr.it 045 802 7550

Pandolfini Tiziana

tiziana.pandolfini@univr.it 045 802 7918

Perduca Massimiliano

massimiliano.perduca@univr.it +39 045 802 7984

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

barbara.simonato@univr.it +39 045 802 7832; Lab. 7960

Speghini Adolfo

adolfo.speghini@univr.it +39 045 8027900

Torriani Sandra

sandra.torriani@univr.it 045 802 7921

Ugel Stefano

stefano.ugel@univr.it 045-8126451
Foto personale,  July 18, 2012

Vallini Giovanni

giovanni.vallini@univr.it 045 802 7098; studio dottorandi: 045 802 7095

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Zapparoli Giacomo

giacomo.zapparoli@univr.it +390458027047

Zipeto Donato

donato.zipeto@univr.it +39 045 802 7204

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English language competence-complete b1 level
6
E
-
ModulesCreditsTAFSSD
6
A
(FIS/07)
One course to be chosen among the following
One course to be chosen among the following
Training
9
F
-
Final exam
3
E
-

1° Year

ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English language competence-complete b1 level
6
E
-

3° Year

ModulesCreditsTAFSSD
6
A
(FIS/07)
One course to be chosen among the following
One course to be chosen among the following
Training
9
F
-
Final exam
3
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S003257

Credits

6

Coordinatore

Barbara Molesini

Scientific Disciplinary Sector (SSD)

BIO/04 - PLANT PHYSIOLOGY

Language

Italian

The teaching is organized as follows:

teoria

Credits

4

Period

II sem.

Academic staff

Barbara Molesini

laboratorio

Credits

2

Period

II sem.

Academic staff

Barbara Molesini

Learning outcomes

------------------------
MM: teoria
------------------------
At the end of the course, the student will acquire the theoretical and practical basis for the design of various types of genetic constructs aimed at developing transgenic, cisgenic, and intragenic plants. In addition, genome editing tools will be covered. Particular attention will be paid to the application of these strategies for qualitative and quantitative crop improvement.
------------------------
MM: laboratorio
------------------------
The laboratory practice will offer to the students the ability to design relevant experiments aimed at addressing two biological questions and to critically evaluate experimental data.

Program

------------------------
MM: teoria
------------------------
Molecular mechanism of stable transformation via Agrobacterium: Chromatin targeting of T-complex, proposed model of T-DNA integration; transgene integration, stability, methylation and silencing; strategies to avoid transgene silencing (e.g. site-specific recombination for precise and clean transgene integration); promoters used for genetic constructs (constitutive, spatiotemporal, inducible, synthetic); analysis of putative promoter sequence for the presence of cis-acting elements; reporter genes (transcriptional and translational fusion constructs); tools employed for the study of DNA-protein interactions: Chromatin immunoprecipitation assay, DNA electrophoretic mobility shift assay, DNA pull-down assay; coupling synthetic promoters with synthetic transcription factors for coordinated expression of multiple genes; multigene engineering; reporter genes; artificial miRNA and target mimicry; cisgenesis and intragenesis; cisgenic and intragenic genetic constructs; strategies to remove marker genes from transformed plants (e.g. via site-specific recombinase under the control of inducible promoters); artificial programmable DNA nucleases (ZFNs and TALENs) and RNA-guided DNA nucleases (Type II CRISPR-Cas9 of Streptococcus pyogenes) for genome engineering; molecular mechanism of CRISPR-Cas9; sgRNA design; minimization of off-target activity (e.g. Cas9 nickase and double nicking strategy and alteration in the length of the sgRNA); applications of CRISPR-Cas system beyond genome editing (e.g. CRISPR interference, gene regulation, and cargo delivery); genetic constructs for genome engineering using the CRISPR-Cas9 system, screening of mutants generated by CRISPR system (e.g. RFLP analysis, T7 endonuclease I assay, heteroduplex mobility assay); hybridization between nucleic acids and DNA/RNA labelling. Supplied educational material: Power point lessons, relevant research articles and reviews.
------------------------
MM: laboratorio
------------------------
- In vitro transcription for dsRNA generation, application of dsRNA in planta after flower emasculation to induce RNA silencing of a repressor of ovary growth. - Design of guide RNA using free bioinformatic software, template preparation by PCR using overlapping primers, in vitro transcription of guide RNAs and screening of the most effective guide RNAs for the cleavage in vitro of their targets in the presence of Cas9.

Examination Methods

The exam will ascertain the students’ knowledge on the topics of the lectures and lab practices. The exam, for both attending and non-attending students, will consist in a written individual exam featuring open-ended questions and exercises.


Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.