Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD

2° Anno   Attivato nell'A.A. 2023/2024

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Attivato nell'A.A. 2023/2024
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
1 module between the following (a.a. 2022/23 Computational Algebra not activated; a.a. 2023/24 Homological Algebra not activated)
Tra gli anni: 1°- 2°
1 module between the following 
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Further activities
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S003197

Docente

Coordinatore

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/03 - GEOMETRIA

Periodo

Secondo semestre dal 6 mar 2023 al 16 giu 2023.

Obiettivi di apprendimento

L'insegnamento si propone di fornire allo studente i concetti fondamentali della teoria dei grafi e le basi della geometria discreta e computazionale. l termine dell'insegnamento lo studente conoscerà alcuni teoremi classici della teoria dei grafi, in particolare riguardo teoremi di struttura, colorazioni, matching theory, immersioni nel piano, problemi di flusso. Inoltre conoscerà i temi fondamentali della geometria discreta e alcuni algoritmi classici della geometria computazionale, e avrà la percezione dei collegamenti con problemi in ambito non prettamente matematico. Sarà in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi (anche avanzati) di Teoria dei Grafi e Geometria discreta.

Prerequisiti e nozioni di base

Fondamenti di geometria affine ed euclidea e di topologia generale.

Programma

TEORIA DEI GRAFI:
-Definizioni e proprietà di base
-Matching in grafi bipartiti: Teorema di Konig, Teorema di Hall. Matching in grafi arbitrari: Teorema di Tutte e Teorema di Petersen.
-Connessione: teoremi di Menger.
-Grafi planari: Formula di Eulero e sue conseguenze, Teorema di Kuratowski.
-Colorazioni: Teorema dei Quattro Colori, Teorema dei Cinque Colori, Teorema di Brooks e di Vizing.

GEOMETRIA DISCRETA:
-Convessità, insiemi convessi, separazione, Lemma di Radon e Teorema di Helly.
-Reticoli, Teorema di Minkowski. Teorema di Erdos-Szekeres.
-Intersezione di insiemi convessi, versione frazionaria del teorema di Helly.
-Superfici discrete e curvature discrete.

GEOMETRIA COMPUTAZIONALE:
-Introduzione generale, reporting vs counting.
-Problema della chiusura convessa: Graham's scan e altri algoritmi.
-Poligonali e problema della Galleria d'Arte. Teorema della Galleria d'Arte, triangolazione di poligoni.
- Diagramma di Voronoi e algoritmo di Fortune.
- Triangolazione di Delaunay e sue proprietà.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità didattiche

L'insegnamento prevede lezioni frontali di teoria ed esercitazioni.

Modalità di verifica dell'apprendimento

Prova scritta (2 ore).
L'esame scritto sulla parte di Teoria dei Grafi, consiste nella risoluzione di 3 o 4 esercizi più due domande di teoria (1 su definizioni/concetti generali e 1 con dimostrazione di un teorema presentato a lezione).

Prova orale (obbligatoria)
Prevede una discussione con il docente sulle definizioni e dimostrazioni discusse durante le lezioni sulla parte di programma di Geometria Discreta e Combinatoria.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Criteri di valutazione

Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della Teoria dei Grafi
- conoscere e aver compreso i concetti fondamentali della Geometria Discreta e Computazionale
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.
- conoscere alcuni possibili sviluppi avanzati della Teoria dei Grafi

Criteri di composizione del voto finale

Prova scritta massimo 30/30. Prova orale, se superata, aggiunge al più 5 punti.

Lingua dell'esame

English