Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Ingegneria e scienze informatiche - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD
12
B
ING-INF/05
12
B
INF/01
12
B
ING-INF/05

2° Anno   Attivato nell'A.A. 2019/2020

InsegnamentiCreditiTAFSSD
6
B
INF/01
Altre attivita' formative
4
F
-
Prova finale
24
E
-
InsegnamentiCreditiTAFSSD
12
B
ING-INF/05
12
B
INF/01
12
B
ING-INF/05
Attivato nell'A.A. 2019/2020
InsegnamentiCreditiTAFSSD
6
B
INF/01
Altre attivita' formative
4
F
-
Prova finale
24
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S007197

Crediti

6

Lingua di erogazione

Italiano

Offerto anche nei corsi:

  • Robotica avanzata del corso Laurea magistrale in Ingegneria e scienze informatiche [LM-18/32]
  • Robotica avanzata del corso Laurea magistrale in Ingegneria e scienze informatiche [LM-18/32]
  • Robotica avanzata del corso Laurea magistrale in Ingegneria e scienze informatiche [LM-18/32]

Settore Scientifico Disciplinare (SSD)

INF/01 - INFORMATICA

L'insegnamento è organizzato come segue:

Laboratorio

Crediti

3

Periodo

II semestre

Teoria

Crediti

3

Periodo

II semestre

Obiettivi formativi

Il corso si propone di fornire le basi teoriche dei sistemi di teleoperazione e dell'interazione fisica con l'ambiente, con particolare riferimento alla progettazione di architetture di controllo in grado di garantire la stabilità di tali sistemi anche in presenza di incertezze e ritardi di comunicazione.

Al termine del corso lo studente dovrà dimostrare di avere acquisito le conoscenze per analizzare le caratteristiche tecniche e le proprietà strutturali di un sistema di controllo d'interazione diretta o tele-operata con l'ambiente.

Queste conoscenze consentiranno allo studente di: i) contruire il modello matematico di un sistema di teleoperazione; ii) costruire il modello matematico dell'interazione fisica uomo robot, iii) progettare una architettura di controllo per garantire la stabilità; iv) implementare la struttura di controllo in Matlab/Simulink e/o in ROS (Robot Operating System).

Alla fine del corso lo studente avrà acquisito la capacità di definire le specifiche tecniche per un sistema di controllo dell'interazione fisica e di teleoperazione bilaterale e conseguentemente di scegliere la più opportuna modalità di progettazione dell'architettura di controllo.

Inoltre sarà in grado di: i) confrontarsi con altri ingegneri (e.g. elettronici, automatici, meccanici) per progettare architetture di controllo avanzate per sistemi di interazione fisica e di teleoperazione complessi; ii) di proseguire gli studi in modo autonomo nell’ambito della progettazione di architetture basate su metodi stocastici e non lineari.

Programma

Argomenti che verranno trattati durante le lezioni teoriche:
- modello dinamico dei manipolatori robotici
- controllo del moto (PID)
- controllo di forza (forza, impedenza)
- teoria della passività
- schemi avanzati di teleoperazione
- compensazione del ritardo di comunicazione

Argomenti che verranno trattati durante le lezioni di laboratorio
- Tuning di un controllore PID
- Implementazione di uno stimatore di velocità
- Identificazione di un sistema elettromeccanico partendo da dati sperimentali
- Implementazione degli algoritmi di teloperazione in ROS/Matlab-Simulink

MATERIALE DIDATTICO: durante il corso verranno fornite dispense, slide e riferimenti di articoli scientifici.

Modalità d'esame

L'esame consisterà in un progetto su alcuni degli argomenti sviluppati durante il corso. Lo studente dovrà implementare su ROS (e/o Matlab/Simulink) un algoritmo di teleoperazione, verificarne il corretto funzionamento e presentare un breve documento tecnico sul lavoro fatto.

Per superare l'esame lo studente dovrà dimostrare di:
- aver compreso i principi alla base del funzionamento di un sistema di teleoperazione bilatera,
- saper applicare le conoscenze acquisite durante il corso per risolvere il problema assegnato.
- essere in grado di esporre il proprio lavoro e di argomentare le scelte progettuali.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Materiale e documenti