Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2024/2025

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-

3° Anno   Sarà attivato nell'A.A. 2025/2026

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2024/2025
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-
Sarà attivato nell'A.A. 2025/2026
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-
Tra gli anni: 1°- 2°- 3°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00031

Crediti

12

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/05 - ANALISI MATEMATICA

Periodo

I semestre dal 1 ott 2024 al 31 gen 2025.

Corsi Singoli

Autorizzato

Obiettivi di apprendimento

In questo insegnamento vengono sviluppati i concetti e le tecniche del calcolo differenziale ed integrale per funzioni reali di più variabili reali, gli sviluppi in serie di funzioni, la teoria delle equazioni differenziali ordinarie e vengono introdotte la misura e l'integrale di Lebesgue. Accanto agli aspetti teorici si porrà l’accento sulle applicazioni, approfondendo gli esempi notevoli per ogni capitolo. Al termine dell'insegnamento gli studenti e le studentesse dovranno essere in grado di dimostrare un'adeguata capacità di sintesi e di astrazione, essere in grado di riconoscere e produrre dimostrazioni rigorose ed essere in grado di formalizzare e risolvere problemi di moderata difficoltà, limitatamente al syllabus dell'insegnamento.

Prerequisiti e nozioni di base

Algebra lineare con elementi di geometria - Analisi Matematica 1

Programma

Saranno resi disponibili online i contenuti delle lezioni a beneficio degli studenti impossibilitati a seguire causa COVID-19 o per i servizi di inclusione.
Inoltre, una parte delle lezioni/tutte le lezioni (si veda l'orario) saranno tenute anche in aula.
(i) Calcolo in più variabili. Intorni in più variabili, continuità per funzioni di più variabili, derivate direzionali, e differenziale di funzioni in più variabili, teorema del differenziale totale, gradiente di funzioni scalari, matrice Jacobiana per funzioni a valori vettoriali, curve di livello di funzioni scalari. Superfici parametriche, vettori tangenti e normale, trasformazioni di coordinate. Derivate e differenziali di ordine superiore, matrice Hessiana, teorema di Schwarz, sviluppo di Taylor.
(ii) Problemi di ottimizzazione per funzioni di più variabili. Punti critici, ottimizzazione libera, studio della matrice Hessiana per la determinazione di massimi e minimi liberi relativi. Ottimizzazione vincolata, teorema di Weierstrass, parametrizzazione del vincolo, teorema dei moltiplicatori di Lagrange, teorema di Dini, teorema della funzione inversa, lemma delle contrazioni.
(iii) Integrali multipli per funzioni continue definite su prodotti di rettangoli. Teorema di Fubini e Tonelli. Baricentri, momenti di inerzia, formula del cambiamento di variabili. Integrali superficiali di prima specie, formula dell'area. Integrale curvilineo di prima specie.
(iv) Integrale curvilineo di seconda specie, campi vettoriali conservativi, potenziale scalare, rotore di un campo vettoriale, introduzione alle forme differenziali, forme chiuse, forme esatte, lemma di Poincaré, formule di Gauss-Green nel piano.
(v) Integrale superficiale di seconda specie, flusso, teorema di Stokes, teorema della divergenza, 2-forme differenziali, differenziale esterno, teorema di Stokes e della divergenza con le forme differenziali.
(vi) Spazi metrici, proprietà assiomatiche della funzione distanza, geodetiche, successioni di Cauchy. Spazi normati, distanza indotta dalla norma. Lo spazio delle funzioni continue definite su un intervallo compatto. Successioni di funzioni, convergenza uniforme, serie di funzioni, convergenza totale, teorema di derivazione e di integrazione per serie.
(vii) Teoria della misura secondo Lebesgue. Misura di Lebesgue: motivazione, ripasso sulla misura di Peano Jordan, misura esterna di Lebesgue. Prime proprietà della misura esterna di Lebesgue. Misure esterne astratte. Insiemi misurabili secondo Caratheodory. Proprietà della misura sugli insiemi misurabili. Regolarità della misura di Lebesgue. Esistenza di insiemi non misurabili secondo Lebesgue. Funzioni misurabili. Funzioni misurabili e loro stabilità. Funzioni semplici e loro integrale. Approssimazione di funzioni misurabili non negative con funzioni semplici. Integrale di Lebesgue di funzioni misurabili non negative. Teorema di Beppo Levi e conseguenze. Lemma di Fatou e teorema della convergenza dominata di Lebesgue. Qualche conseguenza dei teoremi di convergenza integrale. Proprietà vere “quasi ovunque”. Confronto con l'integrale di Riemann. Lo spazio L^2 delle funzioni a quadrato sommabile.
(viii) Equazioni differenziali. Richiami su spazi metrici e spazi normati, teorema della convergenza totale per le serie di funzioni, lemma delle contrazioni. Equazioni differenziali totali. Equazioni differenziali ordinarie: forma integrale del problema di Cauchy. Teorema di Cauchy-Lipschitz. Prolungabilità delle soluzioni locali e soluzioni massimali. Esistenza e unicità per i sistemi di equazioni ordinarie. Un risultato di esistenza globale. Equazioni lineari di ordine n: esistenza e unicità globale per il problema di Cauchy. Equazioni lineari omogenee: struttura dell'insieme delle soluzioni. Equazioni lineari complete: struttura dell'insieme delle soluzioni. Metodo della variazione delle costanti per equazioni di ordine n. Esponenziale complesso. Soluzione generale di equazioni differenziali lineari omogenee a coefficienti costanti, sistemi a coefficienti costanti. Metodo degli annichilatori (o dei coefficienti indeterminati).
(ix) Serie di Fourier di una funzione periodica: definizione e considerazioni euristiche.
Relazioni di ortogonalità per seni e coseni.
Alcuni risultati di convergenza (in L^2, puntuale, uniforme). Applicazioni: risoluzione per separazione di variabili dell'equazione della corda vibrante.
Al di fuori del monte ore dell'insegnamento, che comprende sia lezioni frontali che esercitazioni in aula, sono offerte attività di tutorato.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità didattiche

Didattica in presenza. Materiale multimediale disponibile sulle pagine e-learning del corso.

Modalità di verifica dell'apprendimento

L'esame finale consiste in una prova scritta comprendente una serie di
esercizi da risolvere relativi al programma svolto, seguita, in caso di esito positivo, da una prova
orale principalmente sulla teoria.
La prova scritta, valutata in trentesimi, potrà essere suscettibile di esonero parziale, limitatamente agli appelli della sessione di febbraio, in caso di superamento di una prova in itinere prevista a inizio dicembre: in questo caso, il voto dello scritto sarà dato dalla media aritmetica dei voti ottenuti nelle due prove.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Criteri di valutazione

Questa parte dell'esame ha lo scopo di verificare la capacità di risolvere problemi sul programma dell'insegnamento, il possesso di un'adeguata capacità di analisi, sintesi ed astrazione, a partire da richieste formulate in linguaggio naturale o in linguaggio specifico.
La prova orale ha principalmente lo scopo di verificare la capacità di riconoscere e produrre dimostrazioni rigorose e la capacità di analisi, sintesi ed astrazione.
Alla prova orale verrà attribuito un punteggio da -5 a +5 trentesimi, da sommare algebricamente al punteggio della prova scritta per ottenere il voto finale. Verranno valutati infine con un punteggio compreso tra 0 e 2 gli esercizi per casa proposti durante il corso regolarmente svolti e consegnati.

Criteri di composizione del voto finale

voto finale=voto scritto + voto esame orale + voto esercizi per casa

Lingua dell'esame

italiano