Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
I sem. | 2-ott-2017 | 31-gen-2018 |
I - II semestre | 2-ott-2017 | 15-giu-2018 |
II sem. | 1-mar-2018 | 15-giu-2018 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esami | 1-feb-2018 | 28-feb-2018 |
Sessione estiva d'esame | 18-giu-2018 | 31-lug-2018 |
Sessione autunnale d'esame | 3-set-2018 | 28-set-2018 |
Sessione | Dal | Al |
---|---|---|
Sessione di laurea estiva | 23-lug-2018 | 23-lug-2018 |
Sessione di laurea autunnale | 17-ott-2018 | 17-ott-2018 |
Sessione autunnale di laurea | 23-nov-2018 | 23-nov-2018 |
Sessione di laurea invernale | 22-mar-2019 | 22-mar-2019 |
Periodo | Dal | Al |
---|---|---|
Vacanze di Natale | 22-dic-2017 | 7-gen-2018 |
Vacanze di Pasqua | 30-mar-2018 | 3-apr-2018 |
Festa del Santo Patrono - S. Zeno | 21-mag-2018 | 21-mag-2018 |
VACANZE ESTIVE | 6-ago-2018 | 19-ago-2018 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2018/2019
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2019/2020
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Sistemi stocastici (2019/2020)
Codice insegnamento
4S00254
Docenti
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
Periodo
I semestre dal 1-ott-2019 al 31-gen-2020.
Obiettivi formativi
Sistemi Stocastici [ Matematica Applicata ]
AA 2018/2019
Il corso di Sistemi Stocastici si propone per obiettivo l'introduzione ai concetti di base della teoria soggiacente alla rigorosa descrizione matematica di dinamiche temporali di grandezze aleatorie. In particolare i prerequisiti del corso sono quelli di un corso standard di Probabilità per Matematica/Fisica.
Si suppone che i discenti siano a conoscenza delle nozioni elementari del calcolo delle Probabilità, così come nell'assiomatica di Kolmogorov, con particolare riferimento alla conoscenza dei concetti di funzione di densità, ripartizione, probabilità condizionata, aspettazione condizionata, teoria della misura (di base),funzioni caratteristiche di variabili aleatorie, nozioni di convergenza (in misura, q.o., in Probabilità, etc.), teorema del limite centrale e sue (basilari) applicazioni, etc.
Il corso di Sistemi Stocastici mira, in particolare, a fornire i concetti di base di: spazio di probabilità filtrato, martingala, tempo di arresto, teoremi di Doob, teoria delle catene di Markov a tempo discreto e continuo (classificazione degli stati, misure invarianti, limite, teorema ergodico, etc.), nozioni basilari sulla teoria delle code ed introduzione al moto Browniano.
Una parte del corso è dedicata all'implementazione al calcolatore dei concetti operativi soggiacenti la trattazione dei sistemi stocastici del tipo catena di Markov, tanto a tempo discreto che continuo.
Una parte del corso è dedicata all'introduzione ed allo studio operativo, per via di esercitazione al calcolatore, di serie temporali univariate.
E' importante sottolineare come l'insegnamento di Sistemi Stocastici sia organizzato in modo tale che gli studenti possano concretamente completare ed ulteriormente sviluppare le proprie:
° capacità di analisi, sintesi ed astrazione;
° specifiche competenze computazionali ed informatiche;
° abilità di comprensione di testi, anche avanzati, di Matematica in generale e Matematica applicata in particolare;
° capacità di sviluppare modelli matematici per le scienze fisiche e naturali, essendo al contempo in grado di analizzarne i limiti e l'effettiva applicabilità, anche da un punto di vista computazionale;
° competenze atte allo sviluppo di opportuni modelli matematici e statistici per l’economia e per i mercati
finanziari;
° capacità di estrarre informazioni qualitative da dati quantitativi;
° conoscenze di linguaggi di programmazione o software specifici.
Programma
Sistemi Stocastici [ Matematica Applicata ]
AA 2018/2019 Programma del corso
1) Catene di Markov a stati finiti e tempo discreto: irriducibilità e aperiodicità, distribuzioni stazionarie, classificazione degli stati, MCMC.
2) Catene di Markov a stati numerabili: ricorrenza, positività.
3) Il processo di Poisson e altri processi di conteggio. Cenni alla teoria delle code.
4) Catene di Markov a stati finiti e tempo continuo: semigruppo associato, generatore, distribuzioni stazionarie, equazioni di Kolmogorov, velocità di convergenza all’equilibrio e disuguaglianze funzionali.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
Levin, David A., and Yuval Peres | Markov chains and mixing times | American Mathematical Society | 2017 | Scaricabile alla pagina https://s3.amazonaws.com/academia.edu.documents/30694248/recent.pdf?response-content-disposition=inline%3B%20filename%3DMarkov_chains_and_mixing_times.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191005%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191005T133241Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=3c046ef319a0d4eaa4a83f4138d7950cb982f2f0c351b6f2e135234f11790559 |
Modalità d'esame
Sistemi Stocastici [ Matematica Applicata ]
AA 20018/2019
Il corso si articola in tre parti
1) Teoria dei sistemi stocastici
2) Introduzione all'analisi di serie storiche
3) Esercitazione al calcolatore ( principalmente basate sulla teoria delle catene di Markov, tanto a tempo discreto che continuo )
La parte (2) verrà principalmente svolta in modalità laboratoriale, utilizzando aule informatiche attrezzate con la possibilità, per ogni studente frequentante, di utilizzare un calcolatore al fine di implementare in tempo reale i modelli proposti nel corso della lezione. Tale attività verrà coadiuvata da un tutor che svolgerà i propri compiti per un totale di 24 ore frontali.
La parte (3) verrà insegnata dal Prof. Caliari in modalità laboratoriale, sfruttando aule opportunamente attrezzate a livello informatico.
L’esame è previsto essere suddiviso in
* uno scritto relativo al primo punto
* un progetto presentato in accordo con il programma effettivamente svolto in laboratorio con il prof. Marco Caliari (punto 3)
* esercitazioni svolte relative al punto (2) con presentazione di un progetto
Il programma d'esame ( scritto ) di cui al punto (1)è quello riportato nella sezione Programma.
Il progetto da presentare con il prof. Caliari va con quest'ultimo concordato.
Il progetto da presentare in relazione al punto (2) verrà (dal/la singola/o studentessa/e, scelto nella seguente lista
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@PROGETTI
@ATTENZIONE: questa lista i potrà subire variazioni in relazione al programma effettivamente svolto in laboratorio
@
@SI PREGA di fare riferimento al docente per l'esatta determinazione del novero di progetti all'interno del quale poter @scegliere l'approfondimento di proprio interesse
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
1-Confrontare i seguenti metodi di stima/eliminazione di trend
*Studio delle differenze al primo ordine
*Smoothing con filtro a media mobile
*Trasformata di Fourier
*Smoothing esponenziale
*Data fitting con polinomio
2-Ricavare ed implementare in il predittore ad un passo dei modelli
FIR(4)
ARX(3,1)
OE(3,1)
ARMA(2,3)
ARMAX(2,1,2)
Box-Jenkins(nb,nc,nd,nf)
3-Confronto tra Prediction Error Minimization (PEM) e Maximum Likelihood (ML) per l'identificazione dei parametri di un modello (richiede una ricerca autonoma sul metodo ML)
4-Implementazione della k-fold cross-validation, ad esempio in linguaggio Matlab/Octave, ed associato test seguendo quanto fatto nel corso delle relazioni relative
5-Spiegazione estesa di (almeno) uno dei seguenti test
*Shapiro-Wilk
*Kolmogorov-Smirnov
*Lilliefors
La realizzazione pratica del progetto scelto dal singolo studente può essere effettuata utilizzando uno dei seguenti strumenti software: R, Python, Matlab, Gnu Octave, Excel
Il voto finale, espresso in 30esimi, risulterà dalla seguente formula
Voto= (5/6) * T + (1/6) * E + P
dove
T è il voto espresso in 30esimi relativo alla parte di Teoria ( scritto di competenza del prof. Di Persio)
E è il voto espresso in 30esimi relativo alla parte di esercitazioni ( orale di competenza del prof. Caliari)
P è un punteggio all'interno dell'intervallo [0,2]
E' importante sottolineare come gli obiettivi della prova d'esame siano centrati anche sulla valutazione della capacità del singolo studente di:
° svolgere compiti tecnici definiti in ambito modellistico-matematico
° estrarre informazioni qualitative da dati quantitativi con particolare riferimento all'analisi di serie storiche, allo studio ed alla realizzazione di modelli predittivi, allo sviluppo di processi automatici nell'ambito dell'analisi di fenomeni aleatori;
- usare strumenti informatici quali R, Matlab, Gnu Octave, etc., per implementare i modelli analizzati nel corso e/o implementati nelle ore di laboratorio;
Tipologia di Attività formativa D e F
Insegnamenti non ancora inseriti
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e a breve anche tramite l'app Univr.
Prova Finale
1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
Allegati
Titolo | Info File |
---|---|
![]() |
31 KB, 29/07/21 |
![]() |
31 KB, 29/07/21 |
![]() |
171 KB, 17/02/22 |
Elenco delle proposte di tesi e stage
Proposte di tesi | Area di ricerca |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Argomenti vari |
Tesi assegnate a studenti di matematica | Argomenti vari |
Stage | Area di ricerca |
---|---|
Proposte di stage per studenti di matematica | Argomenti vari |
Erasmus+ e altre esperienze all’estero
Modalità di frequenza
Come riportato al punto 28 del Regolamento Didattico per l'A.A. 2022/2023, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.