Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2018/2019

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06

3° Anno   Attivato nell'A.A. 2019/2020

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2018/2019
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Attivato nell'A.A. 2019/2020
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00253

Crediti

12

Coordinatore

Francesca Mantese

Lingua di erogazione

Italiano

L'insegnamento è organizzato come segue:

Obiettivi formativi

Innanzitutto si intende introdurre lo studente al linguaggio e al rigore necessari per lo studio della matematica superiore. Vengono poi presentate le nozioni e le tecniche fondamentali dell'algebra lineare e della teoria delle matrici, considerando aspetti sia teorici sia computazionali. Il corso introduce inoltre alla geometria analitica del piano e dello spazio, in ambito proiettivo, affine, euclideo. Vengono infine discusse le principali proprietà delle coniche. La trattazione si serve sia di strumenti analitici (coordinate, calcolo matriciale) che sintetici.

Al termine dell'insegnamento lo studente dovrà essere in grado di dimostrare un'adeguata capacità di sintesi e di astrazione, essere in grado di riconoscere e produrre dimostrazioni rigorose ed essere in grado di formalizzare e risolvere problemi di moderata difficoltà, limitatamente al syllabus dell'insegnamento.

Programma

------------------------
MM: ALGEBRA LINEARE
------------------------
Gruppi e campi. Il campo dei numeri complessi. Matrici, operazioni con matrici e loro proprietà. Determinante e rango di una matrice. Matrice inversa. Sistemi di equazioni lineari. Metodo di eliminazione di Gauss. Spazi vettoriali, sottospazi, basi, dimensione. Applicazioni lineari.
------------------------
MM: ELEMENTI DI GEOMETRIA
------------------------
Autovalori e autovettori. Spazi affini ed euclidei. Rette, piani, iperpiani. Prodotto vettoriale e prodotto misto. Affinità e isometrie. Spazi proiettivi. Geometria del piano proiettivo. Coniche euclidee e proiettive.


Al di fuori del monte ore dell'insegnamento, che comprende sia lezioni frontali che esercitazioni in aula, sono offerte attività di tutorato opzionali. In particolare, sono assegnati settimanalmente esercizi da svolgere a casa che vengono corretti individualmente da un tutor e discussi durante le ore di esercitazione.

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
I. N. Herstein Algebra Editori Riuniti 2003
Abate, M. Algebra Lineare Mc Graw Hill 2001
E.Gregorio, L.Salce Algebra Lineare Libreria Progetto Padova 2005
Candilera,Bertapelle Algebra lineare e primi elementi di Geometria Mc Graw Hill   9788838661891
M. Abate, C. de Fabritiis Geometria analitica con elementi di algebra lineare McGraw Hill 2010 9788838665899
Alberto Facchini Algebra e Matematica Discreta (Edizione 1) Edizioni Decibel/Zanichelli 2000 978-8808-09739-2
Giuseppe de Marco Analisi Zero, presentazione rigorosa di alcuni concetti base di matematica per i corsi universitari (Edizione 3) Edizione Decibel/Zanichelli 1997 978-8808-19831-0

Modalità d'esame

L'esame ha lo scopo di verificare la capacità di risolvere problemi sul programma dell'insegnamento, il possesso di un'adeguata capacità di analisi, sintesi ed astrazione, e la capacità di riconoscere e produrre dimostrazioni rigorose.

Modalità:

L'esame consiste di
- una prova scritta unica su entrambi i moduli.
- una prova orale unica su entrambi i moduli.

Per potersi presentare all'orale è necessario aver superato la prova scritta.
La prova orale può essere sostenuta anche in una sessione d'esame successiva.
Il voto ottenuto nella prova scritta rimarrà valido fino alla sessione d'esame di febbraio 2019.

Prova intermedia: Durante la sessione d'esami di Febbraio 2018, si terrà la prova intermedia che verterà sui contenuti del modulo Algebra Lineare. Si svolgerà in concomitanza con il IV appello dell'insegnamento tenutosi nell'anno accademico 2016/17 (stesso orario, stessa aula).
Gli studenti che avranno superato la prova intermedia avranno la possibilità (solo durante il primo appello della sessione estiva 2018) di completare la prova scritta svolgendo soltanto la parte riguardante gli argomenti del modulo Elementi di Geometria.

Bonus esercizi: Ogni settimana verranno assegnati esercizi da svolgere a casa che preparano alla prova scritta. Le soluzioni verranno discusse durante le esercitazioni. I vostri elaborati verranno corretti individualmente da un tutore. Un buon punteggio negli esercizi da luogo a un bonus per l’esame.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI