Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

A.A. 2016/2017

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I sem. 3-ott-2016 31-gen-2017
II sem. 1-mar-2017 9-giu-2017
Sessioni degli esami
Sessione Dal Al
Sessione invernale Appelli d'esame 1-feb-2017 28-feb-2017
Sessione estiva Appelli d'esame 12-giu-2017 31-lug-2017
Sessione autunnale Appelli d'esame 1-set-2017 29-set-2017
Sessioni di lauree
Sessione Dal Al
Sessione estiva Appelli di Laurea 20-lug-2017 20-lug-2017
Sessione autunnale Appelli di laurea 23-nov-2017 23-nov-2017
Sessione invernale Appelli di laurea 22-mar-2018 22-mar-2018
Vacanze
Periodo Dal Al
Festa di Ognissanti 1-nov-2016 1-nov-2016
Festa dell'Immacolata Concezione 8-dic-2016 8-dic-2016
Vacanze di Natale 23-dic-2016 8-gen-2017
Vacanze di Pasqua 14-apr-2017 18-apr-2017
Anniversario della Liberazione 25-apr-2017 25-apr-2017
Festa del Lavoro 1-mag-2017 1-mag-2017
Festa della Repubblica 2-giu-2017 2-giu-2017
Vacanze estive 8-ago-2017 20-ago-2017

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Didattica e Studenti Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D G L M O R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Cicognani Simona

simona.cicognani@univr.it 0458028099

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gaburro Elena

elena.gaburro@unitn.it, elenagaburro@gmail.com

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Lo Bue Maria Carmela

mariacarmela.lobue@univr.it +39 0458028768

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986
Foto,  29 settembre 2016

Rinaldi Davide

davide.rinaldi@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
InsegnamentiCreditiTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
6
B
(MAT/05)
InsegnamentiCreditiTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)

2° Anno

InsegnamentiCreditiTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
6
B
(MAT/05)

3° Anno

InsegnamentiCreditiTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00247

Crediti

6

Settore Scientifico Disciplinare (SSD)

MAT/03 - GEOMETRIA

Lingua di erogazione

Italiano

Periodo

II sem. dal 1-mar-2017 al 9-giu-2017.

Obiettivi formativi

L'insegnamento si propone di fornire allo studente i concetti fondamentali della topologia generale e le basi della geometria differenziale delle curve e delle superfici immerse in uno spazio euclideo.
Al termine dell'insegnamento lo studente conoscerà le principali proprietà degli spazi topologici. Inoltre sarà in grado di riconoscere e calcolare le caratteristiche geometriche principali di curve e superfici immerse (triedo di riferimento, curvature, forme quadratiche fondamentali...).
Sarà inoltre in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di Topologia e Geometria Differenziale.

Programma

L'insegnamento prevede lezioni frontali di teoria ed esercitazioni. Saranno inoltre previste 12 ore di tutorato che si concentrerà in particolare sulla risoluzione di esercizi di topologia.

A seguire un programma dettagliato del corso:

-Topologia generale.

Spazio topologico, definizione per aperti e per chiusi. Esempi: topologia banale, discreta, cofinita. Finezza di una topologia. Basi di aperti. Intorni. Sistema fondamentale di intorni. Chiusura, interno. Applicazioni continue. Omeomorfismi. Punti di frontiera, isolati, aderenza e accumulazione. Insiemi densi. Sottospazi, topologia indotta. Prodotto di spazi e topologia prodotto.
Assiomi di separazione. Spazi di Hausdorff, Regolari e Normali.
Assiomi di numerabilità: primo assioma e secondo assioma.
Quozienti e topologia quoziente. Applicazioni aperte e chiuse.
Esempi di spazi topologici: sfere, spazio proiettivo, nastro di Moebius....
Proprietà di compattezza. Teorema di Heine-Borel. Teorema di Tychonoff. Teorema di Bolzano-Weierstrass.
Connessione. Locale connessione. Connessione per archi. Esempi e controesempi: curva del topologo. Connesso e localmente connesso per archi implica connesso per archi. Semplice connessione, omotopia e gruppo fondamentale (cenni).

-Geometria differenziale delle curve nel piano e nello spazio.

Curve differenziabili nel piano:
Esempi notevoli. Punti regolari e singolari. Immersioni locali, immersioni e immersioni regolari. Lunghezza di un arco. Ascissa curvilinea. Punti di flesso. Curvatura e raggio di curvatura. Centro di curvatura. Formule di Frenet-Serret.

Curve differenziabili nello spazio:
Retta tangente. Piano normale. Flessi. Piano osculatore. Punti stazionari. Curvature. Triedo principale. Formule di Frenet-Serret. Torsione. Teorema Fondamentale della teoria locale delle curve.

-Geometria differenziale delle superfici nello spazio.

Definizione. Atlante differenziabile, atlante orientato, piano tangente, versore normale.
Prima forma quadratica fondamentale: metrica e area. Curvatura tangenziale e curvatura normale di una curva su una superficie. Curvature, sezioni normali, Teorema di Meusnier. Curvature principali, curvatura Gaussiana e curvatura media: Teorema Egregium. Geodetiche.

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Abate, Tovena Curve e Superfici (Edizione 1) Springer 2006
Kosniowski Introduzione alla topologia algebrica (Edizione 1) Zanichelli 1988

Modalità d'esame

Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della topologia generale
- conoscere e aver compreso i concetti fondamentali della teoria locale delle curve e delle superfici
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.

Prova scritta (2 ore).
L'esame consiste nella risoluzione di 4 esercizi (2 di topologia, 1 di teoria delle curve e 1 di teoria delle superfici) più due domande di teoria (1 su definizioni/concetti generali e 1 con dimostrazione di un teorema presentato a lezione).

Prova orale (facoltativa)
Prevede una discussione con il docente sulle definizioni e dimostrazioni discusse durante le lezioni.

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.

Gestione carriere


Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in TAF F o in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
 

Allegati

Titolo Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 4. Regolamento tesi (valido da luglio 2020) 259 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 256 KB, 29/07/21 

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Tesi assegnate a studenti di matematica Argomenti vari
Stage Area di ricerca
Proposte di stage per studenti di matematica Argomenti vari

Ulteriori servizi

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.