Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (1st year)
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (2nd year)
3° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (3rd year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (1st year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (2nd year)
Modules | Credits | TAF | SSD |
---|
Professional Laboratories (3rd year)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biomolecular fondamentals of life (2019/2020)
The teaching is organized as follows:
Learning outcomes
The course provides knowledge of biology, biochemistry and genetics necessary for understanding the physiological and pathological processes related to health and disease of individuals in different stages of life. Biological and biochemical knowledge will contribute to the acquisition of skills that improve people's health and nursing care. At the end of the course students will possess basic knowledge of organic chemistry and biochemistry, the structure-function relationships of the main classes of biological macromolecules, their metabolic regulation and the energy transformations of biochemical processes; knowledge of cellular and genetic biology related to structural, functional and molecular characteristics of the cell; understanding of the applications of genomic knowledge to medicine. This knowledge will enable students to understand cellular processes common to all living organisms, the basic mechanisms that regulate metabolic activity, reproduction and cellular interactions and transmission of genetic diseases in humans. BIOCHEMISTRY: the Course provides: -Basic knowledge of organic chemistry preparatory for biochemistry. -Knowledge related to the structure-function relationships of the most important biological macromolecules and to their metabolic regulation. -Knowledge about the relation between the different biochemical processes and the regulation of the energy level associated to them. At the end of the course the student will acquired the proper scientific terms and notions in order to critically and autonomously evaluate the biochemical processes of life. APPLYED BIOLOGY: The course provides the cognitive basis for understanding the contribution of biological macromolecules in biological organization, in the functioning of the structures of living organisms and in the most relevant aspects of human biology. The course also aims to introduce the fundamental concepts of Genetics, the most common genetic diseases and their transmission modes. At the end of the course the student will be able to know and understand the fundamentals of biology also in relation to the health status of human population.
Program
------------------------
MM: BIOCHIMICA
------------------------
-Constitutive elements of the living matter: polymeric structure of the biological macromolecules Organic chemistry notions: carbon atom properties; hybrid orbitals; organic compounds classification: functional groups; hydrocarbons; alcohols, ethers, thiols, amines, aldehydes and ketones; carboxylic acids, esters, anhydrides. - Structure and function of proteins: amino acids; peptide bond; structural levels of proteins; fibrous proteins and globular proteins; hemoglobin and myoglobin; hemoglobin variants; classification, function and regulation of enzymes. - Bioenergetics: metabolism, chemical transformations in the cell; thermodynamics; ATP as energy exchanger; oxidation/reductions. - Structure and metabolism of carbohydrates; mono- and disaccharides; polysaccharides; glycolysis and its regulation; gluconeogenesis; penthose phosphate pathway; structure, function and metabolism of glycogen. - AcetylCoA. Citric acid cycle; electron transport chain and oxidative phosphorylation; ATP synthesis. - Structure and metabolism of lipids: structural lipids and biological membranes; lipids transport; lipids digestion and fatty acids beta-oxidation; hints on fatty acids biosynthesis - Amino acid metabolism; transamination and oxidative deamination; urea cycle; metabolism of the carbon chain. The frontal teaching is the exclusive method adopted in this course.
------------------------
MM: BIOLOGIA APPLICATA
------------------------
Synthetic program General characteristics of living organisms. - Life macromolecules: DNA, RNA, proteins. - Cell structure and function: general characteristics, separation of subcellular components. Plasma membrane, cytoplasm, nucleus. - The molecular basis of hereditary information. DNA characteristics, Watson and Crick model. DNA replication. - Gene expression. Genetic code, transcription, translation. Gene expression regulation. - Genetics. Composition of the genome. - Mutations: types and effects. Spontaneous mutations. Mutagenesis by chemical and physical agents. - Genome Organization. - Chromatin: composition and structure. - Chromosomes: structural patterns, karyotype, anomalies. - The cell cycle. Mitosis - Sexual and meiosis reproduction. Gametogenesis. Meiotic Errors: Aneuploids. The gene dosage and inactivation of the X chromosome, the determination of sex in the embryo. - Genetics. Transmission of hereditary characters, Mendel's laws. Genotype and phenotype, autosomal and sex-related inheritance. Interpretation and discussion of genealogical trees. Genetics of blood groups. Methods of transmission of genetic diseases in humans, calculation of risks. Molecular Diagnosis.
Bibliography
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Bertoldi, Colombo, Magni, Marin, Palestini | Chimica e Biochimica | EdiSES | 2015 | 978-88-7959-878-1 | |
David L Nelson, Michael M Cox | Introduzione alla Biochimica del Lehninger | Zanichelli | 2018 | ||
P.C. CHAMPE, R.A. HAEVEY, D.R. FERRIER | Le basi della biochimica | Zanichelli | 2015 | ||
Donati Stefani Taddei | Biologia & Genetica | Zanichelli | 2019 | ||
Reece Urry Cain Wasserman Minorsky Jackson | Campbell Biologia e Genetica (Edizione 1) | Pearson | 2015 | 9788865189320 | |
Bonaldo, Crisafulli, D'Angelo, Francolini, Grimaudo, Rinaldi, Riva, Romanelli | Elementi di Biologia e Genetica | EdiSES | 2019 | ||
Sadava, Hillis, Craig Heller, Hacker | Elementi di Biologia e Genetica (Edizione 5) | Zanichelli | 2019 |
Examination Methods
------------------------
MM: BIOCHIMICA
------------------------
To pass the Biochemistry module test the students must demonstrate an appropriate understanding of the basic concepts of biochemistry, from biological macromolecules to metabolic transformations. Furthermore, they must show the capability to expose their reasoning in a critical and precise manner and using an appropriate scientific language. The exam consists of a written test, structured as follows: - 16 multiple choice questions. - 2 open questions, to be briefly answered in a limited space The final score will be expressed in thirty's (/30). The examination will be validated with a minimum score of 18/30.
------------------------
MM: BIOLOGIA APPLICATA
------------------------
The assessment of learning outcomes envisages a written test to ensure knowledge of the topics under consideration. The written test potentially covers all the topics listed in the program. It is articulated in groups of question related to the main themes of the course (life macromolecules, cell biology, cell interactions, genetic information flow, mendelian inheritance, human genetics). Items are formulated as multiple answer questions and open answer questions. The answer to each item requires knowledge of biological terminology, ability to interpret genealogy trees, ability to systematically connect knowledge of biology and genetic molecules, ability to describe and exemplify biological structures. The examination will be validated with a minimum score of 18/30. The overall evaluation of the answers to the questions is expressed in thirty/30. To help the student to understand the contents and the formulation of the items, the examination tests submitted in the previous year will be discussed in the classroom with the students.