Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

1° Anno

InsegnamentiCreditiTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05

2° Anno  Attivato nell'A.A. 2022/2023

InsegnamentiCreditiTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Final exam
24
E
-
InsegnamentiCreditiTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
Attivato nell'A.A. 2022/2023
InsegnamentiCreditiTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Final exam
24
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Further activities
3
F
-
Tra gli anni: 1°- 2°
Training
3
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S009011

Crediti

6

Coordinatore

Francesco Setti

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

L'insegnamento è organizzato come segue:

Teoria

Crediti

5

Periodo

Primo semestre

Laboratorio

Crediti

1

Periodo

Primo semestre

Obiettivi formativi

Il corso si propone di fornire allo studente competenze in ambito di: i) analizzare di dati con metodi di statistica univariata, multivariata e ad alta dimensionalità (mega-variata); ii) identificazione di situazioni anomale; iii) analisi di dati eterogenei; iv) analisi di processi dinamici e non stazionari; v) predizione di serie temporali. Al termine del corso lo studente dovrà dimostrare di essere in grado gestire il monitoraggio di un processo industriale. In particolare dovrà dimostrare di saper: i) identificare le potenziali failure mode; ii) progettare un sistema di acquisizione dati sulla linea di produzione; iii) identificare anomalie di funzionamento del processo; iv) ottimizzare i parametri di processo secondo degli obiettivi predefiniti (rejection rate, time reduction, etc.); v) analizzare le cause di failures inattese (root cause analysis); vi) gestire la manutenzione dell'impianto con tecniche predittive.

Programma

Measurement and sensors:
- Foundamentals of industrial metrology: basic definitions, international system of units, measurement system model, errors, static and dynamic calibration
- Displacement measurement: resistive potentiometers, linear variable differential transformers, eddy current transducers, triangulation photodiodes, encoders, strain gauges
- Vibration measurement: vibrometers and accelerometers
- Flow measurement: pitot tube, hot-wire anemometer, pressure drop flowmeters, drag force flowmeter, ultrasonic flowmeter
- Thermal measurement: bimetallic thermometers, thermocouples, resistance temperature detectors, thermistors, bolometers and thermal imaging

Data analysis:
- Monitoring charts: Shewhart, cumulative sum, moving average, exponentially weighted moving average, Western Electric rules
- Univariate monitoring schemes: hypothesis testing, generalized likelihood ratio, Kullback-Leibler divergence, Hellinger distance, ordinary least square, ridge regression, principal component analysis and regression
- Multivariate monitoring schemes: multivariate monitoring charts, dynamic latent variable regression
- Unsupervised data analysis: hierarchical clustering, mean shift, k-Nearest neighbours, k-means, one-class SVM, support vector data description
- Fault isolation techniques

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità d'esame

L’esame prevede la discussione con il docente di un progetto che propone una soluzione ad un problema industriale.
Lo studente dovrà presentare il proprio lavoro in circa 15 minuti (con o senza l'uso di materiale di supporto come slides, relazione scritta, demo, ecc.), seguiti da domande da parte del docente.
Per la composizione del voto si terrà conto di:
- performance del sistema sviluppato (con metriche diverse da problema a problema);
- motivazione teorica che ha spinto lo studente ad effettuare le scelte progettuali;
- capacità di esporre in modo chiaro e conciso i punti chiave del progetto;
- capacità di sostenere una discussione sulle possibili soluzioni alternative e potenziali cause di fallimento della soluzione elaborata.
Lo studente dovrà altresì dimostrare padronanza di tutti gli argomenti in programma (anche quelli non affrontati nel corso del progetto).

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI