Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

1° Anno

InsegnamentiCreditiTAFSSD

2° Anno  Attivato nell'A.A. 2023/2024

InsegnamentiCreditiTAFSSD
Attivato nell'A.A. 2023/2024
InsegnamentiCreditiTAFSSD
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
1 module among the following (a.a. 2023/24: Data protection in business organizations not activated)
6
C
IUS/17
Tra gli anni: 1°- 2°
2 modules among the following (a.a. 2023/24: Statistical methods for business intelligence not activated)
Tra gli anni: 1°- 2°
2 modules among the following

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S009067

Crediti

6

Coordinatore

Alberto Castellini

Lingua di erogazione

Inglese en

Offerto anche nei corsi:

L'insegnamento è organizzato come segue:

PART I en

Crediti

3

Periodo

Secondo semestre

PART II en

Crediti

3

Periodo

Secondo semestre

Obiettivi di apprendimento

L’insegnamento si propone di introdurre gli studenti ai modelli statistici utilizzati in “data science”. Si svilupperanno le fondamenta dell’apprendimento statistico (supervisionato e non supervisionato) ponendo l’enfasi sulle basi matematiche delle differenti metodologie allo stato dell’arte. Inoltre si punta a fornire derivazioni rigorose dei metodi correntemente utilizzati nelle applicazioni industriali e scientifiche per consentire agli studenti di comprenderne i requisiti per il corretto utilizzo. Sessioni di laboratorio complementari illustreranno l’utilizzo di fondamentali algoritmi e casi di studio industriali in cui lo studente potrà imparare ad analizzare data-set reali per mezzo di software Python. Al termine del corso lo studente dovrà dimostrare di: - conoscere le fasi principali di preparazione dei dati, costruzione e valutazione del modello; - saper sviluppare soluzioni per la selezione delle “feature”; - conoscere e saper utilizzare i principali modelli di regressione e regolarizzazione (e.g., LASSO, “Ridge Regression”); - conoscere e sapere utilizzare i principali metodi per la riduzione della dimensionalità (e.g., “Principal Component Regression”, “Partial Least Squares”); - conoscere e saper utilizzare i principali metodi per la classificazione (e.g., KNN, “Logistic Regression”, LDA) - conoscere e saper utilizzare i principali metodi di regressione e classificazione basati su alberi (e.g., alberi di decisione, “random forest”) - conoscere e saper utilizzare i principali metodi per l’analisi dei dati non supervisionati (e.g., “K-means clustering”, Clustering gerarchico)

Prerequisiti e nozioni di base

Basi di programmazione Python; basi di statistica. Alcuni concetti di base di programmazione e statistica saranno ripresi durante il corso.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Criteri di composizione del voto finale

Il voto finale è rappresentato dalla media aritmetica dei voti delle due parti (1 e 2) del corso.