Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
Final exam
18
E
-
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
Final exam
18
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
2 modules among the following
6
C
INF/01
Between the years: 1°- 2°
2 modules among the following
6
B
INF/01
Between the years: 1°- 2°
2 modules among the following
6
C
ING-INF/05
6
C
INF/01 ,ING-INF/05
6
C
INF/01
Between the years: 1°- 2°
Further activities: 3 cfu training and 3 cfu further language skill or 6 cfu training. Foreign students must acquire compulsory 3 credits of Italian language skills
6
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S010688

Credits

6

Coordinator

Not yet assigned

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

The teaching is organized as follows:

Teoria
The activity is given by Mobile robotics - Teoria of the course: Master's degree in Computer Engineering for Robotics and Smart Industry

Credits

5

Period

Semester 2

Academic staff

Alessandro Farinelli

Laboratorio
The activity is given by Mobile robotics - Laboratorio of the course: Master's degree in Computer Engineering for Robotics and Smart Industry

Credits

1

Period

Semester 2

Academic staff

Daniele Meli

Learning objectives

This course presents the main issues related to control and planning techniques for mobile robotic platforms. The objective is to provide the students with the ability to design, apply and evaluate algorithms that allow mobile robotic platforms to interact with the surrounding environment by performing complex tasks with a high level of autonomy. At the end of the course the students must demonstrate to understand the fundamental concepts related to localization, trajectory planning, task planning, decision-making under uncertainty and machine learning in the context of mobile robotic platforms. Moreover, the students must demonstrate to be able to work with the main development tools for mobile robotic applications and to be able to define technical specifications for deigning and integrating software modules for mobile robotic platforms. The students must also be able to deal with professional figures to design solutions for the high level control of mobile robotic platforms and to continue the studies independently following the technical evolution in the field of mobile robotics and developing innovative approaches to improve the state of the art.

To pass the exam, students must demonstrate:
- to have understood the principles behind programming for mobile robots
- to be able to present arguments on the topics of the course in a precise and organic way without digressions
- to know how to apply the acquired knowledge to solve application problems presented in the form of exercises, questions and projects.

Program

– Kinematics and dynamics for mobile robots (e.g., non-holonomic constrain, unicycle-like model).
– Navigation for mobile robots: localization and mapping (e.g., Extended Kalman Filter SLAM), trajectory planning (e.g., navigation functions).
– Decision-making under uncertainty (e.g., Markov Decision Process) .
– Reinforcement learning for mobile robotic platforms (e.g., model-based and model free approaches, Deep RL).
– Lab: implementation of autonomous behaviors for mobile robotic platforms using state of the art development toolkits (e.g., ROS2), simulation environments for empirical evaluation (e.g., Unity), validation on simple mobile platforms (e.g., turtlebot3).

Learning assessment procedures

The exam is composed of an oral test and a project that focuses on mobile robot programming.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE