Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Session | From | To |
---|---|---|
Sessione estiva di laurea | Jul 17, 2020 | Jul 17, 2020 |
Sessione autunnale di laurea | Oct 13, 2020 | Oct 13, 2020 |
Sessione autunnale di laurea - Dicembre | Dec 9, 2020 | Dec 9, 2020 |
Sessione invernale di laurea | Mar 10, 2021 | Mar 10, 2021 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
Vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biochemistry and analytical biochemistry - BIOCHIMICA ANALITICA (2020/2021)
Teaching code
4S02696
Credits
4
Coordinator
Not yet assigned
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/10 - BIOCHEMISTRY
The teaching is organized as follows:
teoria
laboratorio [1° turno]
laboratorio [2° turno]
Learning outcomes
------------------------
MM: teoria
------------------------
Knowledge of methodologies and methodological schemes for the study of biomolecules
------------------------
MM: laboratorio
------------------------
Knowledge and experimentation of basic biochemical methodologies, through practical exercises. The student will receive systematic training on the main techniques used in the biochemistry laboratory for the identification, isolation and structural and functional study of biological macromolecules, with particular attention to the purification and identification of proteins.
------------------------
MM: laboratorio
------------------------
Knowledge and experimentation of basic biochemical methodologies, through practical exercises. The student will receive systematic training on the main techniques used in the biochemistry laboratory for the identification, isolation and structural and functional study of biological macromolecules, with particular attention to the purification and identification of proteins.
Program
------------------------
MM: teoria
------------------------
Protein purification Ionic properties of amino acids and proteins. Isoelectric point. Sample preparation. Methods of cell disruption and production of the initial crude extracts. Protein solubilization methods. Saline swabs. Fractionation and precipitation techniques. Filtration, dialysis, sample concentration. Spectroscopic techniques. Properties of electromagnetic radiation. Light-matter interaction. States and processes involved in the phenomena of absorption, emission and decay. Absorption spectroscopy in ultraviolet and visible. Qualitative and quantitative aspects of light absorption. Colorimetric and spectroscopic methods applied to the determination of protein concentration. Spectrophotometers. Fluorescence and emission spectroscopy. Intrinsic and extrinsic fluorophores. Green fluorescent protein Spectrofluorimeters. Fluorescence resonance energy transfer (FRET). Circular dichroism. Chromatographic techniques. Principles of chromatography. The chromatogram. Parameters that determine the chromatographic performance. Van Deemter equation. Column chromatography: ion exchange, molecular exclusion, affinity, hydrophobic interaction and their applications. Electrophoretic techniques. General principles and electrophoretic mobility. Support materials. Nucleic acid electrophoresis. Protein electrophoresis. SDS PAGE. Electrophoresis in native conditions. Protein coloring on gel. Protein blotting (western blotting). Isoelectrofocusing. Basics of: Capillary electrophoresis. Two-dimensional electrophoresis gel.
------------------------
MM: laboratorio
------------------------
1. Determination of the concentration of an unknown protein by absorption at 280 nm and by Bradford colorimetric method. 2. Determination of the kinetic parameters, Michaelis-Menten constant, turnover number, and inhibition constant of the acid phosphatase enzyme using the Lineweaver-Burk graphical linearization method. 3. Determination of the absorption spectrum of the pyridine coenzyme NADH (reduced form) and determination of the molar extinction coefficient of NADPH. 4. Determination of the molecular weight of an unknown protein by molecular exclusion chromatography. 5. Protein separation by electrophoresis under denaturing conditions (SDS-PAGE) followed by visualization of the bands by Coomassie Blue staining 6. Transfer of proteins onto the nitrocellulose membrane by electroblotting followed by immunodetection of the proteins for the identification of one or more proteins by exploiting the specificity of binding with an antibody (WESTERN BLOT).
------------------------
MM: laboratorio
------------------------
1. Determination of the concentration of an unknown protein by absorption at 280 nm and by Bradford colorimetric method. 2. Determination of the kinetic parameters, Michaelis-Menten constant, turnover number, and inhibition constant of the acid phosphatase enzyme using the Lineweaver-Burk graphical linearization method. 3. Determination of the absorption spectrum of the pyridine coenzyme NADH (reduced form) and determination of the molar extinction coefficient of NADPH. 4. Determination of the molecular weight of an unknown protein by molecular exclusion chromatography. 5. Protein separation by electrophoresis under denaturing conditions (SDS-PAGE) followed by visualization of the bands by Coomassie Blue staining 6. Transfer of proteins onto the nitrocellulose membrane by electroblotting followed by immunodetection of the proteins for the identification of one or more proteins by exploiting the specificity of binding with an antibody (WESTERN BLOT).
Bibliography
Activity | Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|---|
teoria | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 | ||
laboratorio | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 | ||
laboratorio | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 |
Examination Methods
------------------------
MM: teoria
------------------------
The final (written) exam will focus on all the topics of the program. The student will have to demonstrate that they understand and be able to use the fundamental concepts of each topic.
------------------------
MM: laboratorio
------------------------
The written exam of Analytical Biochemistry will contain questions related to laboratory experiences
------------------------
MM: laboratorio
------------------------
The written exam of Analytical Biochemistry will contain questions related to laboratory experiences
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
3° | Python programming language | D |
Maurizio Boscaini
(Coordinator)
|
3° | Model organism in biotechnology research | D |
Andrea Vettori
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. | Various topics |
Il problema della donazione degli organi | Various topics |
Risposte trascrittomiche a sollecitazioni ambientali in vite | Various topics |
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite | Various topics |
Attendance modes and venues
As stated in the Didactic Regulations, there is no generalised obligation of attendance. Individual lecturers are, however, free to require a minimum number of hours of attendance for eligibilitỳ for the profit exam of the teaching they teach. In such cases, attendance of teaching activities is monitored in accordance with procedures communicated in advance to students.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which is composed of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma cluster, and Villa Lebrecht and Villa Eugenia located in the San Floriano di Valpolicella cluster.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.