Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
1 module between the following
1 module between the following
3 modules among the following
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Mathematical finance (2021/2022)
Codice insegnamento
4S001109
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
Periodo
Primo semestre dal 4 ott 2021 al 28 gen 2022.
Obiettivi formativi
Il corso di Mathematical Finance per la Laurea Magistrale internazionalizzata (erogata completamente in lingua Inglese) si propone di introdurre i principali concetti del calcolo stocastico a tempo discreto e continuo nell'ambito della moderna teoria dei mercati finanziari. In particolare lo scopo fondamentale del corso è quello di fornire gli strumenti matematici propri del setting del calcolo stocastico di Itȏ per la determinazione, lo studio e l'analisi di modelli per azioni e/o tassi d'interesse determinati da equazioni differenziali stocastiche con rumore Browniano. Ingredienti fondamentali sono le basi della teoria delle martingale a tempo continuo, i teoremi Girsanov e Feynman–Kac e le loro applicazioni alla teoria dell'option pricing con specifici esempi in ambito azionario, ivi comprendendo modelli di tipo path-dependent, e nell'ambito dei modelli per tassi d'interesse. Grande attenzione verrà posta anche agli aspetti caratterizzanti l'applicazione concreta dei suddetti concetti nella pratica del risk modelling/management e del pricing, con l'aiuto di soluzioni informatiche e lezioni arricchite da simulazioni al calcolatore. E' importante sottolineare come l'insegnamento di Sistemi Stocastici sia organizzato in modo tale che gli studenti possano concretamente completare ed ulteriormente sviluppare le proprie: ° abilità nello stabilire collegamenti profondi con discipline non matematiche, sia in termini di motivazione della ricerca matematica che di ricadute applicative dei risultati di tali indagini; ° specifiche competenze computazionali ed informatiche; ° abilità di comprensione di testi, anche avanzati, di Matematica in generale e Matematica applicata in particolare; ° capacità di sviluppare modelli matematici per le scienze fisiche e naturali, essendo al contempo in grado di analizzarne i limiti e l'effettiva applicabilità, anche da un punto di vista computazionale; ° competenze atte allo sviluppo di opportuni modelli matematici e statistici per l’economia e per i mercati finanziari; ° capacità di estrarre informazioni qualitative da dati quantitativi; ° conoscenze di linguaggi di programmazione o software specifici.
Programma
[1] Analisi stocastica: basi
Nozioni di base sui processi stocastici
Processi stocastici: principali esempi in tempo discreto e continuo
Integrazione stocastica
Il lemma di Itô-Döblin
SDE: introduzione ed esempi (ad esempio: caso lineare, caso disturbo multiplicativo)
Soluzione di SDE come processi di Markov
Formula di Feynman-Kac
Teorema di Girsanov
Controllo stocastico: introduzione ed esempi (ad esempio: principio di programmazione dinamica, principio del massimo di Pontryagin)
[2] Modelli a tempo discreto
Opzioni, processo di valore, strategie di copertura, completezza, arbitraggio
Teoremi fondamentali dell' Asset Pricing (in tempo discreto)
Alberi binomiali
Camminata casuale e prezzi
Formula di Balck e Scholes (derivata dall'analisi degli alberi binomiali)
[3] Moto Browniano (MB)
Principali proprietà del MB: filtrazione generata da MB, proprietà martingale, variazione quadratica, volatilità, proprietà di riflessione, ecc.
[4] Modelli a tempo continuo
Equazione di Black-Scholes-Merton
Evoluzione del portafoglio / valori delle opzioni
Analisi di sensibilità (greche)
L'approccio Martingala
Strategie di copertura e replica
Modelli di mercato azionario
Paradosso di Siegel
Pacchetti ed opzioni esotiche
[5] Modelli di tassi d'interesse
Modelli Markoviani per tassi a breve
Modello di Merton
Tasso di interesse stocastico per il modello di Black e Scholes
Portafoglio di copertura
Cambio di numeraire (anche in presenza di più fonti di rischio)
Caps,floors, collars
Modelli per la dinamica dei tassi di interesse
Modello di Vasicek
Modello di Cox-Ingersoll-Ross
Modellistica dei tassi a termine
Modelli di arbitraggio per struttura a termine
Struttura di Heath-Jarrow-Morton
Estensione Hull-White del modello di Vasicek
[6] Scelta del portafoglio e prezzi delle attività
Modelli di Bachelier e Samuelson
Funzioni di utilità
Il problema di Merton (valore e approccio alla programmazione statica)
Problema di massimizzazione dell'utilità
[7] Miscellanea
Valutazione delle opzioni nei modelli Gaussiani
Forward LIBORs
Modellistica dei tassi di swap
Approccio Mean Field Games ai sistemi di agenti finanziari interagenti
Calibrazione per modelli di tassi di interesse
Controllo stocastico e modelli finanziari (ad esempio: il caso del modello Heston)
Modelli a volatilità stocastica ed applicazioni
Espansioni (polinomiali, asintotiche) per modelli finanziari
EDS su reti con applicazioni in finanza
Bibliografia
Modalità d'esame
Esame orale con esercizi scritti:
l'esame è basato su domande a risposta aperta e sulla discussione di esercizi da svolgere per iscritto nel corso della prova e/o su domande/esercizi a valere su specifici progetti presentati in sede di esame e previamente concordati con il docente. Le domande, aperte ed esercizi, mirano alla verifica delle conoscenze relative agli argomenti sviluppati nel programma del corso, nonché alla risoluzione di problemi concreti propri della Finanza Matematica, ed alla acquisita conoscenza degli associati strumenti di modellazione stocastica.