Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 3, 2022 Jan 27, 2023
Secondo semestre Mar 6, 2023 Jun 16, 2023

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G L M O P S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Cubico Serena

serena.cubico@univr.it 045 802 8132

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Laking Rosanna Davison

rosanna.laking@univr.it

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Pianezzi Daniela

daniela.pianezzi@univr.it

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Segala Roberto

roberto.segala@univr.it 045 802 7997

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zorzi Margherita

margherita.zorzi@univr.it +39 045 802 7908

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
Final exam
32
E
-

2° Year

ModulesCreditsTAFSSD
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008278

Teacher

Giacomo Albi

Coordinatore

Giacomo Albi

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Period

Primo semestre dal Oct 3, 2022 al Jan 27, 2023.

Learning objectives

After successful completion of the module students will be able to understand and apply the basic notions, concepts, and methods of computational linear algebra, convex optimization and differential geometry used for data analysis. In particular, they will master the use of singular value decomposition method as well as random matrices for low dimensional data representations, including fundamentals of sparse recovery problems, as e.g., compressed sensing, low rank matrix recovery, and dictionary learning algorithms. The students will be also able to manage the representation of data as clusters around manifolds in high dimensions and in random graphs, acquiring methods to construct local charts and clusters for the data. In complementary laboratory sessions they will get acquainted with suitable programming tools and environment in order to analyse relevant case studies.

To pass the exam, students must demonstrate:
- to have understood the principles underlying computational linear algebra, convex optimization and differential geometry applied to data analysis.
- to be able to present arguments on the topics of the course in a precise and organic way without digressions
- to know how to apply the acquired knowledge to solve application problems presented in the form of exercises, questions and projects.

Prerequisites and basic notions

Differential calculus, linear algebra, basics of numerical analysis, basic knowledge of a programming language

Program

* Introduction to optimization
- optimality conditions
- numerical methods
* Singular Value Decomposition:
- Best k-rank approximation, Randomized SVD
- Principal Component Analysis, Pseudo-Inverse.
* Compressed Sensing
- Basis pursuit problem: l1-minimization and sparse recovery
- Application to signals and images reconstruction.
* Data Analysis
- Dimensionality reduction techniques: (Local Linear Embedding, ISOMAP, diffusion map).
- Supervised learning for classification: Support Vector Machine
- Unsupervised learning for clustering: K-means.
- Artificial Neural Networks and applications.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

* Lectures and homeworks
* Code development and examples
* Individual or group projects

Learning assessment procedures

To pass the exam, students must demonstrate:
- to have understood the principles underlying computational linear algebra, convex optimization and differential geometry applied to data analysis.
- to be able to present arguments on the topics of the course in a precise and organic way without digressions
- to know how to apply the acquired knowledge to solve application problems presented in the form of exercises, questions and projects.

The exam consists of an oral examination with written questions and discussion. The development of a project is encouraged (but not mandatory) as an integration of the oral examination.

Evaluation criteria

The student must be able to formalize and solve data analysis problems by using, adapting and developing advanced numerical methods in the context of optimization, numerical linear algebra seen during teaching.

Criteria for the composition of the final grade

Oral exam with questions (85%), resolution of exercises and home project (15%)

Exam language

inglese

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 

Primo semestre From 10/3/22 To 1/27/23
years Modules TAF Teacher
Genetics D Massimo Delledonne (Coordinatore)
1° 2° Algorithms D Roberto Segala (Coordinatore)
Secondo semestre From 3/6/23 To 6/16/23
years Modules TAF Teacher
1° 2° Algorithms D Roberto Segala (Coordinatore)
1° 2° Organization Studies D Serena Cubico (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° Advanced topics in financial engineering F Not yet assigned
1° 2° ECMI modelling week F Not yet assigned
1° 2° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° Google summer of code (GSOC) F Not yet assigned
1° 2° Mathematics mini courses Not yet assigned
1° 2° History and Didactics of Geology D Not yet assigned

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attachments

Title Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!


Alternative learning activities

In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.

Attachments


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti