Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Primo semestre | Oct 3, 2022 | Jan 27, 2023 |
Secondo semestre | Mar 6, 2023 | Jun 16, 2023 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Analytical mechanics (2022/2023)
Teaching code
4S001102
Teacher
Coordinatore
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MAT/07 - MATHEMATICAL PHYSICS
Period
Secondo semestre dal Mar 6, 2023 al Jun 16, 2023.
Learning objectives
The class is devoted to a modern study of classical mechanics from a mathematical point of view. The aim of the class is to introduce the tools and techniques of global and numerical analysis, differential geometry and dynamical systems to formalise a model of classical mechanics. At the end of the class a student should be able to construct a model of physical phenomena of mechanical type, write the equations of motion in Lagrangian and Hamiltonian form and analyse the dynamical aspects of the problem.
Prerequisites and basic notions
Qualitative analysis of Ordinary Differential Equations, and stability theory. Theory of differential manifolds, tangent and cotangent bundles, vector fields, Lie derivatives, differential forms and Riemannian metrics.
Program
• Introduction. At the beginning of the course we will quickly review the basic aspects of Newtonian mechanics. The structure of the Galilean space-time and the axioms of mechanics. Systems of particles: cardinal equations. Conservative force fields. Mass particle in a central field force and the problem of two bodies.
• Lagrangian and Hamiltonian mechanics on Rn. Equivalence of Euler-Lagrange, Hamilton and Newton equations in the mechanical case. Hamilton's principle, conservation of generalised energy and invariance of Euler-Lagrange equation with respect to lifted change of coordinates. Legendre transformation. Cyclic variables and reduction in the Hamiltonian contest. Poisson brackets and first integrals.
• Lagrangian mechanics on manifolds. Constrained systems: d’Alembert principle and Lagrange equations. Models of constraints and their equivalence. Invariance of Lagrange equations for change of coordinates. Jacobi integral. Stability theory for Lagrangian systems and small oscillations. Noether’s Theorem, conserved quantities and Routh’s reduction.
Applications: the Foucault pendulum, the magnetic stabilisation and others.
• Rigid bodies. Orthonormal basis, orthogonal and skew-symmetric matrices. Space and body frame: angular velocities. Cardinal equations in different reference frames. A model for rigid bodies. Euler’s equations.
• Introduction to Lie groups and algebras. Group actions, trivializations and Euler-Poincare' theory.
Bibliography
Didactic methods
In-room lectures, team working, homeworks and weekly summary in teams
Learning assessment procedures
The exam is divided in two part: a written and an oral test. Only students who have passed the written exam will be admitted to the oral examination.
Evaluation criteria
The written test is based on the solution of open-form problems and the oral test in which students are required to discuss the written test and to answer some questions proposed in open form. If positive, the mark obtained in the written test will be valid until the last session of the present
academic year (February 2024).
In particular, objective of evaluation will be:
- Knowledge and understanding: a part of the written and the oral tests will be devoted to verify the effective knowledge and understanding of the course's contents (mainly, the third exercise of the written test and the oral test).
- Applying knowledge and understanding: both during the written and the oral tests, the student will be required to solve problems based on the course's contents.
- Making judgements: during the tests, the student can be asked to solve problems requiring a contribution basing on the material of the course assigned for personal study.
- Communication skills: during the written and the oral tests, the solutions expressed in a clear, complete and short way will be preferred.
- Learning skills: part of the course's contents will be based on textbook or scientific articles left to the students for personal study.
Criteria for the composition of the final grade
A student must obtain a mark of at least 18/30 (best) in both the written and oral part to pass the exam,
and the final grade will be given by the average of the marks of the written and of the oral part.
Exam language
Inglese
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Genetics | D |
Massimo Delledonne
(Coordinatore)
|
|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinatore)
|
1° 2° | Organization Studies | D |
Serena Cubico
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Advanced topics in financial engineering | F | Not yet assigned |
1° 2° | ECMI modelling week | F | Not yet assigned |
1° 2° | ESA Summer of code in space (SOCIS) | F | Not yet assigned |
1° 2° | Google summer of code (GSOC) | F | Not yet assigned |
1° 2° | Mathematics mini courses | Not yet assigned | |
1° 2° | History and Didactics of Geology | D | Not yet assigned |
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
Attachments
Title | Info File |
---|---|
![]() |
31 KB, 29/07/21 |
![]() |
31 KB, 29/07/21 |
![]() |
171 KB, 17/02/22 |
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Manifolds |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Optimality conditions |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Mathematics Bachelor and Master thesis titles | Various topics |
Stage | Research area |
---|---|
Internship proposals for students in mathematics | Various topics |
Double degree
The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.
Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.
The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!
Alternative learning activities
In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.Attachments
Title | Info File |
---|---|
![]() |
167 KB, 27/08/21 |
![]() |
44 KB, 30/08/21 |
![]() |
113 KB, 30/08/21 |
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.Please refer to the Crisis Unit's latest updates for the mode of teaching.