Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Semester 1 | Oct 3, 2022 | Jan 27, 2023 |
Semester 2 | Mar 6, 2023 | Jun 16, 2023 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Jan 30, 2023 | Mar 3, 2023 |
Sessione estiva d'esame | Jun 19, 2023 | Jul 31, 2023 |
Sessione autunnale d'esame | Sep 4, 2023 | Sep 29, 2023 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 20, 2023 | Jul 20, 2023 |
Sessione di laurea autunnale | Oct 12, 2023 | Oct 12, 2023 |
Sessione di laurea invernale | Mar 14, 2024 | Mar 14, 2024 |
Period | From | To |
---|---|---|
Ponte Festa di tutti i Santi | Oct 31, 2022 | Nov 1, 2022 |
Ponte dell'Immacolata Concezione | Dec 8, 2022 | Dec 9, 2022 |
Vacanze natalizie | Dec 23, 2022 | Jan 8, 2023 |
Vacanze di Pasqua | Apr 7, 2023 | Apr 10, 2023 |
Festa della Liberazione | Apr 24, 2023 | Apr 25, 2023 |
Festa del lavoro | May 1, 2023 | May 1, 2023 |
Festa del Santo Patrono | May 21, 2023 | May 21, 2023 |
Festa della Repubblica | Jun 2, 2023 | Jun 2, 2023 |
Chiusura estiva | Aug 14, 2023 | Aug 19, 2023 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff

Raffaele Alice
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module between the following (a.a. 2022/23 Computational Algebra not activated; a.a. 2023/24 Homological Algebra not activated)
1 module between the following
3 modules among the following
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematics for decisions (2022/2023)
Teaching code
4S008838
Teacher
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MAT/09 - OPERATIONS RESEARCH
Period
Semester 1 dal Oct 3, 2022 al Jan 27, 2023.
Learning objectives
Mathematics for decisions is a seminar course comprising: + interventions by external professors (seminars, mini-courses); + interventions by professionals (statements of problems from the applications, description of needs and/or projects); + interventions by the referent of the course, collaborators of him, or colleagues by the department (both classes and proposal of problems and projects from the applications). + presentations delivered by the students on arguments of their interests and as agreed upon (seminars). The aim of this offert is to provide the studens with opportunities to meet and/or get involved into working or research projects, activating and developing their own interests, motivations and talents. Among the targets of this offert: + provide the students with opportunities to get in touch with working and/or research environments, developing motivations, interests, attitudes; + allow connections with professionalities and disciplines, not necessarily within mathematics but that can motivate the work of a matematician or help appreciating its possible applicability; + stimulate and develope the competence in designing mathematical models for the managing of production facilities, networks, and services; + provide the students with occasions to experiment their computational and informatics skills and to become more aware of their impact and role. With this the aim is to lead our students to: + have the competence and attitude to cover technical and professional roles with an high-level modellistic-math profile; + have the necessary starting background and the attitude to document themselves by accessing math texts, research articles, project deliverables, technical documentation.
Prerequisites and basic notions
“Mathematics for decisions” is a 6-credit course that can be seen as a natural continuation of the course of “Operations Research”, offered in the Bachelor’s degree in Mathematics and mandatory for all students.
Anyway, this course is also recommended to Computer Science students with interests in algorithms, mathematics, and optimization.
The prerequisites from the “Operations Research” course divide in two groups:
+ the methodology and the bones of concrete mathematics: invariants, good characterizations, induction, dynamic programming, algorithms, data structures, complexity. The CS students may get these with the course in Algorithms at the bachelor and then in the Algorithms and Complexity course in the first year of the master.
+ the fundamentals of Linear Programming: we encourage the CS students to collaborate in collecting this background. We are available in suggesting materials, and open at guesting them at the few lessons of pertinence in the “Operations Research” course.
Also, our approach in the Math Decisions course will be rather pragmatic, thus the theoretical knowledge will not be that necessary after all (though it is certainly a pity and a weakness not to have the whole picture).
Program
- Problems, Instances, Models
- Basic notions of Linear Programming and Integer Linear Programming
- Introduction to the Gurobi solver
- Some concepts of Polyhedral Combinatorics:
- Polytopes, polyhedra and equivalent representations
- Basic lemmas and characterizations
- Convex Hull
- Integer polytopes
- Classical Operations Research problems and their formulations (e.g., Knapsack, Set Covering, Network, Scheduling, Routing, etc.)
- Modelling techniques in Integer Linear Programming
- Approaches for solving NP-hard problems:
- Exact algorithms:
- Enumeration
- Implicit and Branch-and-Bound Enumeration
- Cutting Planes
- Separation oracles and callbacks
- Branch-and-Cut
- Complete and incomplete formulations (e.g., Traveling Salesman Problem, Perfect Matching)
- Compact formulations
- Approximation algorithms
- Heuristic algorithms:
- Local search
- Constructive heuristics
- Metaeuristics and matheuristics
- Advanced decomposition techniques
Bibliography
Didactic methods
The course will be held in presence in the classroom. Anyway, all lectures will be recorded with Zoom and uploaded to Panopto, in order to give the possibility to recover them to those unable to attend. The rights of students will be preserved in situations of travel limitation or confinement due to national provisions to combat COVID or in particular situations of fragile health. In these cases, you are invited to directly contact the teacher to organize the most appropriate remedial strategies.
Learning assessment procedures
In order to pass this course, students will have to do a written exam and to develop a project, which will be presented and assigned during the course.
The project may come from us, or from the industrial world, from other research centers or universities, from colleagues or from research lines in the department.
The project typically includes a development phase where students demonstrates that they are able to acquire the technical and IT skills to implement the algorithms and models studied or developed, in order to solve a given problem.
The project can be developed individually or by groups. The evaluation of the project will consist in the drafting of a document and a short oral discussion.
Evaluation criteria
Modelling skills
Knowledge of the paradigms of Linear Programming, Integer Linear Programming, Mixed Integer Linear Programming, and of the main modelling techniques
Knowledge of exact and heuristic methods
Ability to independently solve an optimization problem
Understanding of a scientific article not discusses in the classroom
Ability to synthesize and present
Criteria for the composition of the final grade
A) Written exam: maximum 30 points.
B1) Midterm presentation about a scientific paper in a flipped-classroom modality: maximum 5 points.
B2) Final project: maximum 25 points.
Final grade: average of A and (B1 + B2).
Exam language
English
Type D and Type F activities
Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.
1. Modules taught at the University of Verona
Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.
2. CLA certificate or language equivalency
In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:
- English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.
Those enrolled until A.Y. 2020/2021 should consult the information found here.
Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it
3. Transversal skills
Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali
Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. CONTAMINATION LAB
The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.
Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).
Find out more: https://www.univr.it/clabverona
PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.
5. Internship/internship period
In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations): here information on how to activate the internship.
Check in the regulations which activities can be Type D and which can be Type F.
Modules and other activities that can be entered independently in the booklet
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Genetics | D |
Massimo Delledonne
(Coordinator)
|
|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
|
1° 2° | Introduction to Docker | D |
Franco Fummi
(Coordinator)
|
|
1° 2° | Mobile app design by using React Native | D |
Graziano Pravadelli
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Python programming language | D |
Carlo Combi
(Coordinator)
|
1° 2° | Organization Studies | D |
Serena Cubico
(Coordinator)
|
1° 2° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | ECMI modelling week | F | Not yet assigned |
1° 2° | ESA Summer of code in space (SOCIS) | F | Not yet assigned |
1° 2° | Federated learning from zero to hero | D |
Gloria Menegaz
|
1° 2° | Google summer of code (GSOC) | F | Not yet assigned |
1° 2° | Mathematics mini courses |
Paolo Dai Pra
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Alternative learning activities
In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.Documents
Title | Info File |
---|---|
![]() |
pdf, it, 167 KB, 27/08/21 |
![]() |
pdf, it, 97 KB, 29/07/24 |
![]() |
pdf, it, 113 KB, 30/08/21 |
Attendance modes and venues
As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.
Career management
Student login and resources
Graduation
Deadlines and administrative fulfilments
For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.
Need to activate a thesis internship
For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.
Final examination regulations
Upon completion of the Master’s degree dissertation students are awarded 32 CFU. The final examination consists of a written dissertation on a specific topic agreed with a supervising professor and presented to a commission (Dissertation Committee).
The dissertation can be high-level theoretical or experimental (in the latter case, it may focus on either basic or applied research), it can deal with a theoretical topic or propose the resolution of a specific problem, or description of a work project, and may be carried out at universities, research institutions, schools, laboratories and companies in the framework of internships, traineeships, study stays in Italy and abroad. The dissertation must be original and written by the student under the guidance of a Supervisor. At the request of the student, the dissertation may be written and presented in Italian.
Professors belonging to the Mathematics Teaching Committee, the Department of Computer Science, and any associated departments may be appointed as Supervisors, as well as any professors from the University of Verona whose area of interest (SSD - Scientific-disciplinary Sector) is included in the teaching regulations of the degree programme.
Students may take the final exam only if meeting all requirements set by the School of Sciences and Engineering.
The Master's degree in Mathematics is obtained by successfully passing the final examination and thus earning the 120 CFU included in the study plan.
The material submitted by the student for the final examination will be examined by the Dissertation Committee, which comprises three professors, possibly including the Supervisor, and appointed by the President of the Teaching Committee. The final examination will be assessed based on the following criteria: the student’s performance during the entire study programme, the knowledge acquired during the dissertation work, their understanding of the topic and autonomy of judgment, their ability to apply such knowledge, and communicate effectively and fully all the outcomes of the work and the main results obtained.
The final examination and the degree ceremony will be carried out, in one of the four graduation sessions throughout the academic year, by the Final Examination Committee appointed by the President of the Teaching Committee, and made up of a president and at least four members chosen from among the professors of the University.
For further information, please refer to the Final examination regulations.
Documents
Title | Info File |
---|---|
![]() |
pdf, it, 31 KB, 02/11/22 |
![]() |
pdf, en, 31 KB, 02/11/22 |
![]() |
pdf, it, 171 KB, 20/03/24 |
List of thesis proposals
theses proposals | Research area |
---|---|
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Manifolds |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Optimality conditions |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Mathematics Bachelor and Master thesis titles | Various topics |