Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD
Insegnamenti offerti ad anni alterni
Insegnamenti offerti ad anni alterni
InsegnamentiCreditiTAFSSD
Insegnamenti offerti ad anni alterni
Insegnamenti offerti ad anni alterni
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Ulteriori competenze
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S02813

Crediti

12

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/05 - ANALISI MATEMATICA

L'insegnamento è organizzato come segue:

Teoria

Crediti

9

Periodo

I semestre

Esercitazioni

Crediti

3

Periodo

I semestre

Docenti

Sisto Baldo

Obiettivi formativi

Il corso presenta gli aspetti di base della teoria della misura (sia di Lebesgue che astratta) e dell'analisi
funzionale moderna, introducendo in particolare alla teoria degli spazi di Banach e di Hilbert. I risultati astratti
saranno accompagnati, per quanto possibile, da esempi di applicazioni a spazi funzionali ed a problemi di
analisi concreti, con l'obiettivo di dare subito un'idea di come le tecniche apprese possano essere utilizzate nei
diversi ambiti della matematica pura ed applicata.

Programma

Misura ed integrale di Lebesgue. Misure esterne, integrazione astratta, teoremi di convergenza integrale.
Spazi di Banach e duali, teoremi di Hahn-Banach, del grafico chiuso, dell'applicazione aperta, di Banach-
Steinhaus. Riflessività. Spazi di successioni. Spazi Lp e W1,p: aspetti funzionali e risultati di approssimazione.
Spazi di Hilbert, basi di Hilbert, serie di Fourier. Convergenza e compattezza debole. Teoria spettrale per
operatori compatti autoaggiunti. Cenni sulle distribuzioni.

Modalità d'esame

Esame scritto ed orale

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Materiale e documenti