Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
Un insegnamento a scelta
Un insegnamento a scelta
Un insegnamento a scelta

2° Year  activated in the A.Y. 2012/2013

ModulesCreditsTAFSSD
Un insegnamento a scelta (insegnamenti seminariali ad esclusione di Psicologia dell'educazione e Matematica finanziaria)
Un insegnamento a scelta
6
C
MAT/09
Prova finale
32
E
-
ModulesCreditsTAFSSD
Un insegnamento a scelta
Un insegnamento a scelta
Un insegnamento a scelta
activated in the A.Y. 2012/2013
ModulesCreditsTAFSSD
Un insegnamento a scelta (insegnamenti seminariali ad esclusione di Psicologia dell'educazione e Matematica finanziaria)
Un insegnamento a scelta
6
C
MAT/09
Prova finale
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
Altre attivita' formative
4
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02819

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/07 - MATHEMATICAL PHYSICS

Period

II semestre dal Mar 1, 2012 al Jun 15, 2012.

Learning outcomes

We deal with some concepts and problems which were
the cradle of much mathematics. The course should also be an opportunity
to reflect on the deep connections between mathematics and physics. It is
elementary being taught
to students who do not have preliminary knowledge in rational mechanics,
however
we use some ideas and techniques of functional analysis, geometry and
dynamical systems.

Program

Holonomic constraits. Conservative and gyroscopic
forces,
scalar and vector potentials. Dissipative forces. Dynamics of a
constrained point particle without friction. Lagrange equation,
generalized potentials.
Relative dynamics. Lagrange equation with fictitious force. Terrestrial
dynamics.
Elementary celestial mechanics, the Kepler problem.
Lagrangian mechanics of systems. Lyapunov stability of
the equilibrium.
Hamilton's principle. Noether's theorem. Local least action theorem.
Geodesics and stationary length. The Jacobi metric.

Examination Methods

L'esame finale consiste in una prova orale.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE