Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

2° Anno  Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01

3° Anno  Attivato nell'A.A. 2016/2017

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
Attivato nell'A.A. 2016/2017
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00031

Crediti

12

Coordinatore

Sisto Baldo

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/05 - ANALISI MATEMATICA

L'insegnamento è organizzato come segue:

teoria 1

Crediti

5

Periodo

I semestre

esercitazioni

Crediti

4

Periodo

I semestre

teoria

Crediti

3

Periodo

I semestre

Docenti

Sisto Baldo

Obiettivi formativi

Nel corso vengono sviluppati i concetti e le tecniche del calcolo differenziale ed integrale per funzioni reali di più variabili reali, gli sviluppi in serie di funzioni, la teoria delle equazioni differenziali ordinarie e vengono introdotte la misura e l'integrale di Lebesgue. Accanto agli aspetti teorici si porrà l’accento sulle applicazioni, approfondendo gli esempi notevoli per ogni capitolo.

Programma

Spazi metrici, completezza. Convergenza puntuale e uniforme per serie e successioni di funzioni. Continuità e calcolo differenziale per funzioni di più variabili. Funzioni implicite. Integrazione per funzioni di più variabili. Integrali curvilinei e superficiali. Campi di vettori. Teoremi della divergenza e di Stokes. Problema di Cauchy per (sistemi di) equazioni differenziali ordinarie. Misura e integrale di Lebesgue. Teoremi di passaggio al limite sotto il segno di integrale. Serie di Fourier.

Bibliografia

Testi di riferimento
Attività Autore Titolo Casa editrice Anno ISBN Note
esercitazioni Giuseppe De Marco Analisi 2. Secondo corso di analisi matematica per l'università Lampi di Stampa (Decibel Zanichelli) 1999 8848800378
esercitazioni G. De Marco Analisi due Zanichelli (decibel) 1999 88-08-01215-8
esercitazioni M. Conti, D. L. Ferrario, S. Terracini, G. Verzini Analisi matematica. Dal calcolo all'analisi, Vol. 1 (Edizione 1) Apogeo 2006 88-503-221
esercitazioni Giuseppe de Marco Analisi uno. Primo corso di analisi matematica. Teoria ed esercizi Zanichelli 1996 8808243125
esercitazioni Giuseppe de Marco Analisi Zero, presentazione rigorosa di alcuni concetti base di matematica per i corsi universitari (Edizione 3) Edizione Decibel/Zanichelli 1997 978-8808-19831-0

Modalità d'esame

Esame scritto e orale.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Materiale e documenti