Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Matematica applicata - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2015/2016
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2016/2017
Insegnamenti | Crediti | TAF | SSD |
---|
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Modelli matematici per la biologia (2015/2016)
Codice insegnamento
4S00256
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/05 - ANALISI MATEMATICA
Periodo
II semestre dal 1 mar 2016 al 10 giu 2016.
Obiettivi formativi
Comprensione dei principali strumenti matematici, locali e globali, analitici e geometrici, necessari allo studio dei modelli meccanici e biologici descritti da equazioni e sistemi differenziali ordinari.
Programma
Sistemi dinamici discreti e continui, generalità. Sistemi lineari e non lineari, integrabilità, flusso, integrali primi. Equilibri e stabilità, studio degli autovalori, metodo di Lyapunov. Equazioni di Eulero-Lagrange, trasformata di Legendre, equazioni di Hamilton e sistemi Hamiltoniani. Applicazione a modelli biologici di crescita delle popolazioni di tipo malthusiano o logistico, il sistema predatore-preda di Lotka-Volterra. Modellizzazione e analisi di vari fenomeni fisici.
Il corso sarà basato principalmente:
Per la prima parte, sul volume:
Introduzione all'Analisi Qualitativa delle Equazioni Differenziali Ordinarie
Marco Squassina, Simone Zuccher
Apogeo Editore 2008, ISBN 9788850310845
http://www.apogeonline.com/libri/9788850310845/scheda
Modalità d'esame
Esame scritto