Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

2° Anno  Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01

3° Anno  Attivato nell'A.A. 2016/2017

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
Attivato nell'A.A. 2016/2017
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S02750

Crediti

12

Coordinatore

Gino Mariotto

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

FIS/01 - FISICA SPERIMENTALE

L'insegnamento è organizzato come segue:

Teoria

Crediti

6

Periodo

II sem.

Teoria - esercitazioni

Crediti

3

Periodo

II sem.

Laboratorio-esercitazioni

Crediti

2

Periodo

II sem.

Laboratorio

Crediti

1

Periodo

II sem.

Obiettivi formativi

Il corso è rivolto agli studenti del I anno del corso di Laurea triennale in Matematica Applicata. Scopo del corso è la presentazione dei fondamenti del metodo sperimentale, della meccanica classica e della termodinamica. Gli obiettivi formativi sono realizzati mediante attività didattiche (lezioni frontali ed esercitazioni, sia in aula che in laboratorio) tenute durante il secondo semestre per un numero complessivo 12 CFU, articolate su due moduli svolti in parallelo: A) modulo di teoria (10 CFU) e B) modulo di laboratorio (2 CFU).

A) Modulo di teoria:
Il modulo di teoria fornisce le conoscenze di base, attraverso la derivazione delle leggi e dei principi che governano il moto dei corpi e le trasformazioni dei sistemi termodinamici, nonché gli elementi utili alla risoluzione di esercizi e problemi. Per aiutare lo studente nella comprensione e nell'apprendimento delle leggi e dei principi della meccanica e della termodinamica, durante le lezioni frontali verrà fatto ricorso in modo sistematico alla fenomenologia. Il corso è integrato da esercitazioni che avranno per oggetto la soluzione di esercizi e problemi tali da mettere lo studente in condizioni di affrontare e superare la prova scritta dell'esame finale.

B) Modulo di laboratorio:
Il modulo di laboratorio intende fornire gli elementi essenziali del metodo sperimentale, dimostrando che la fisica è una scienza quantitativa basata sulla misura di grandezze fisiche e sulla valutazione delle incertezze di misura dovute alla risoluzione dello strumento e alla presenza di errori casuali. Il corso ha lo scopo di avviare lo studente alla conoscenza e all’utilizzo della strumentazione di laboratorio tramite l’esecuzione di alcuni esperimenti che prevedono la misura di varie grandezze fisiche e la successiva elaborazione dei dati raccolti.
In particolare, si vuole dimostrare la validità di semplici leggi fisiche, avvalendosi della corretta procedura sperimentale.

Programma

A) Modulo di teoria:

1. Meccanica

1.1 - Grandezze fisiche e loro misura: Note introduttive sul metodo sperimentale. Grandezze fisiche fondamentali e derivate. Unità di misura. Definizione operativa delle grandezze fisiche. Sistemi di unità di misura. Il sistema internazionale (S.I.). Scalari e vettori. Operazioni con i vettori: somma, prodotto scalare e prodotto vettoriale. Generalità sulle leggi fisiche. Analisi dimensionale. Rappresentazione tabulare e grafica. Ordini di grandezza.

1.2 - Cinematica del punto materiale: Relatività del moto. Sistemi di riferimento. Validità sperimentale della geometria euclidea. Sistemi in coordinate cartesiane, polari e cilindriche. Trasformazioni delle coordinate di un punto fra diversi sistemi di riferimento. Posizione, spostamento e velocità. Concetto di punto materiale. Legge oraria del moto. Traiettoria. Moto rettilineo e curvilineo.
Moto unidimensionale. Posizione istantanea e spostamento. Derivazione delle grandezze cinematiche a partire dalla legge oraria. Velocità e accelerazione scalare media e istantanea. Dall'accelerazione alla velocità e alla legge oraria. Condizioni iniziali. Moto uniforme e uniformemente accelerato. Accelerazione di gravità g. Moto armonico semplice.
Moto in tre dimensioni. Sistemi di riferimento in coordinate cartesiane e polari. Equazioni parametriche del moto. Velocità e accelerazione vettoriali medie e istantanee. Moti ad accelerazione costante. Moto curvilineo in coordinate intrinseche. Componenti tangenziale e normale dell'accelerazione. Moto curvilineo piano in coordinate polari. Componenti radiale e trasversale della velocità. Moto circolare: velocità ed accelerazione angolare. Moto circolare uniforme: periodo e frequenza di rivoluzione. Moto circolare in notazione vettoriale. Regola di Poisson.

1.3 - Moti relativi: Sistemi di riferimento assoluti e raltivi. Spostamento, velocità e accelerazione di trascinamento. Moto relativo traslatorio uniforme ed uniformemente accelerato. Trasformazioni di Galileo: invarianza dell'accelerazione. Principio di relatività classica.
Moto relativo roto-traslatorio. Trasformazioni della velocità e accelerazione. Moto rotatorio uniforme: accelerazione centrifuga e di Coriolis.

1.4 - Dinamica del punto materiale: Concetto di massa. Particella libera. Principio di inerzia. Concetto di interazione e di forza. Legge di Newton. Principio di azione e reazione. Impulso e quantità di moto. Teorema dell'impulso. Classificazione delle forze esistenti in natura. Definizione operativa di forza. Equazione del moto di una particella. Risultante delle forze applicate. Equilibrio statico e dinamico. Vincoli e reazioni vincolari. Forze d'attrito statico e dinamico. Attrito viscoso. Forze elastiche. Oscillatore orizzontale e verticale. Pendolo semplice. Sistemi di riferimento non inerziali. Forza di trascinamento e forze fittizie.
Momento della quantità di moto, momento di una forza e teorema del momento angolare. Forze centrali. Conservazione del momento angolare. Legge di gravitazione universale di Newton e leggi di Keplero.

1.5 - Energia e Lavoro: Integrali primi della forza: impulso e lavoro. Potenza. Unità di misura del lavoro e della potenza. Energia cinetica. Teorema dell’energia cinetica. Lavoro di una forza costante. Lavoro di una forza elastica e di una forza centrale. Forze conservative. Energia potenziale Proprietà della funzione energia potenziale. Relazione fra energia potenziale e forza. Principio di conservazione dell'energia meccanica. Lavoro di una forza non-conservativa.
Campi di forze centrali. Natura conservativa di un campo di forze centrali. Energia potenziale gravitazionale. Moto sotto l’azione della forza gravitazionale. Velocità di fuga dalla terra.

1.6 - Dinamica dei sistemi di particelle: Sistemi discreti e sistemi continui. Generalizzazione dei risultati della dinamica del punto materiale. Grandezze collettive: quantità di moto, momento angolare e energia cinetica totale. Forze interne e forze esterne. Principio di azione e reazione per un sistema di punti materiali. Equazioni cardinali della dinamica di un sistema di particelle. Condizioni di equilibrio per un sistema di punti materiali. Centro di massa (CM): definizione e sue proprietà. Sistema di riferimento del laboratorio (sistema L) e del CM (sistema C). Teoremi di König. Moto del CM e moto rispetto al CM. Lavoro delle forze interne e delle forze esterne. Energia potenziale delle forze interne ed esterne. Energia propria. Energia interna. Energia totale meccanica. Problema dei due corpi: massa ridotta. Sistemi rigidi costituiti da due corpi puntiformi.
Proprietà dei sistemi di forze. Coppia di forze. Centro di forze e centro di gravità.
Urti tra due particelle. Approssimazione di impulso. Forze interne ed esterne. Conservazione della quantità di moto totale e dell'energia cinetica del CM. Urti centrali elastici e completamente anelastici. Urti tra particelle libere e corpi vincolati. Conservazione del momento della quantità di moto.


2. Termodinamica

2.1 - Primo principio della termodinamica: Sistemi e stati termodinamici. Universo termodinamico. Variabili termodinamiche: concentrazione, pressione, volume e temperatura. Concetto di pressione idrostatica. Concetto di temperatura. Principio dell’equilibrio termico. Definizione operativa di temperatura. Contatto termico. Punti fissi. Scale termometriche: scale Celsius e Kelvin. Termometri. Stati di equilibrio termodinamico. Variabili di stato. Equazioni di stato.
Equivalenza fra lavoro e calore. Primo principio della termodinamica. Energia interna. Conservazione dell'energia di un sistema termodinamico. Trasformazioni termodinamiche. Lavoro e calore. Lavoro termodinamico: sua dipendenza dalla trasformazione termodinamica. Lavoro per trasformazioni reversibili ed irreversibili. Elementi di calorimetria. Temperature e calore. Capacità termica e quantità di calore scambiata. Calori specifici molari e calore specifico di un solido. Processi isotermi. Cambiamenti di fase. Calori latenti.

2.2 - Gas ideali: definizione e proprietà. Equazione di stato di un gas perfetto. Trasformazioni di un gas. Lavoro e calore. Energia interna di un gas perfetto. Calori specifici molari dei gas ideali. Relazione di Mayer. Il primo principio della termodinamica per un gas perfetto. Trasformazioni reversibili ed irreversibili. Trasformazioni isoterme, isocore e isobare. Trasformazioni adiabatiche. Applicazione del primo principio. Trasformazioni cicliche. Cicli termici e cicli frigoriferi. Rendimento di un ciclo termico. Ciclo di Carnot.

2.3 - Secondo principio della termodinamica: Macchine termiche e macchine frigorifere. Sorgenti di calore e termostati. Enunciati del secondo principio della termodinamica.Teorema di Carnot. Rendimento massimo. Diseguaglianza di Clausius.
Entropia. Entropia di un gas ideale. Trasformazioni adiabatiche. Scambi di calore con sorgenti. Entropia dell'universo termodinamico.

B) Modulo di laboratorio:

Il corso è diviso in una parte di lezioni in aula sulla teoria degli errori di misura ed una seconda parte di esperienze svolte in laboratorio dagli studenti:

ELEMENTI DI TEORIA DEGLI ERRORI

- Misurazione di una grandezza fisica. Le unità di misura. Gli strumenti di misura.
- Errori di misura. Errori sistematici e casuali. Errori assoluti e relativi. Propagazione degli errori. Cifre significative ed arrotondamenti.
- Analisi statistica degli errori casuali. La media e la deviazione standard. La deviazione standard della media.
- Istogrammi e distribuzioni. La distribuzione normale e le sue proprietà.
- Interpolazione dei dati con una curva. Il metodo dei minimi quadrati. Interpolazione lineare e polinomia.
- Lezioni introduttive sugli esperimenti da eseguire.


ESPERIENZE di LABORATORIO

1) MISURA DI LUNGHEZZE
• Uso di diversi strumenti di misura (metro, micrometro, calibro)
• Analisi statistica dei dati

2) IL PENDOLO SEMPLICE
• Misura del periodo di oscillazione e dipendenza dalla massa e dall’ampiezza
• Smorzamento delle oscillazioni
• Misura dell’accelerazione di gravità

3) DISCUSSIONE RISULTATI

Modalità d'esame

A) Modulo di teoria.

L’esame consiste in una prova scritta e in una prova orale, alla quale lo studente accede solo dopo aver superato la prova scritta. La prova scritta ha validità limitata a due appelli d’esame, compreso quello in cui lo scritto è stato superato. La prova scritta si intende superata solo se il voto riportato non è inferiore a 18/30.

Prova scritta: risoluzione di alcuni problemi tipici di meccanica (del punto materiale, dei sistemi di punti materiali e/o del corpo rigido), e di termodinamica (trasformazioni reversibili e irreversibili di gas ideali).

Prova orale: consiste in un colloquio con domande sul programma svolto in aula. La prova orale si intende superata solo se il voto riportato non è inferiore a 18/30.

Per il modulo di teoria è prevista una valutazione complessiva (in /30) ottenuta facendo la media aritmetica dei voti riportati nelle due prove superate

B) Modulo di laboratorio.

Per il modulo di laboratorio si procederà alla valutazione di una relazione contenente i risultati degli esperimenti svolti durante le esercitazioni di laboratorio.

C) Il voto finale sarà la media pesata sui CFU dei voti riportati nelle prove di valutazione previste per i due moduli di teoria e di laboratorio.


LIBRI DI TESTO CONSIGLIATI

A) Modulo di Teoria:

Qualunque testo di Fisica Generale l'Università, per esempio:

P. Mazzoldi, M. Nigro, C. Voci
Fisica - Vol. 1: Meccanica - Termodinamica
EdiSES s.r.l., Napoli (Seconda edizione, ultima ristampa)
ISBN 88 7959 137 1

B) Modulo di Laboratorio:

Dispense e appunti messi a disposizione dal docente.


ORARIO DI RICEVIMENTO DEGLI STUDENTI:
Martedì dalle ore 13.30 alle ore 14.30 nell'ufficio del docente coordinatore del corso.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Materiale e documenti