Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Matematica applicata - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2016/2017

ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06

3° Year  activated in the A.Y. 2017/2018

ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
activated in the A.Y. 2016/2017
ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2017/2018
ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02752

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/01 - MATHEMATICAL LOGIC

Period

I semestre dal Oct 1, 2015 al Jan 29, 2016.

Learning outcomes

Fundamental methods and concepts of mathematics, especially the method of proof and the language of sets.

Program

Propositions and predicates
Connectives and quantifiers
Sets, elements, subsets
The axiomatic-deductive method
Mathematical terminology
Proof techniques
Relations and functions
Families and sequences
The Peano axioms
Number systems
Transfinite methods

Reference texts
Author Title Publishing house Year ISBN Notes
Day, Martin An Introduction to Proofs and the Mathematical Vernacular. 2015 https://www.math.vt.edu/people/day/ProofsBook/IPaMV.pdf Testo disponibile dall'autore sotto Creative Commons.
Velleman, Daniel J. How to Prove It: A Structured Approach (Edizione 2) Cambridge University Press 2006 978-0-521-67599-4
Cantini, Andrea & Minari, Pierluigi Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) Le Monnier 2009 978-88-00-86098-7
Halmos, Paul Teoria elementare degli insiemi (Edizione 4) Feltrinelli 1981

Examination Methods

Written exam.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE