Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2015 | Jan 29, 2016 |
II semestre | Mar 1, 2016 | Jun 10, 2016 |
Session | From | To |
---|---|---|
Sessione straordinaria Appelli d'esame | Feb 1, 2016 | Feb 29, 2016 |
Sessione estiva Appelli d'esame | Jun 13, 2016 | Jul 29, 2016 |
Sessione autunnale Appelli d'esame | Sep 1, 2016 | Sep 30, 2016 |
Session | From | To |
---|---|---|
Sess. autun. App. di Laurea | Oct 12, 2015 | Oct 12, 2015 |
Sess. autun. App. di Laurea | Nov 26, 2015 | Nov 26, 2015 |
Sess. invern. App. di Laurea | Mar 15, 2016 | Mar 15, 2016 |
Sess. estiva App. di Laurea | Jul 19, 2016 | Jul 19, 2016 |
Sess. autun. 2016 App. di Laurea | Oct 11, 2016 | Oct 11, 2016 |
Sess. autun 2016 App. di Laurea | Nov 30, 2016 | Nov 30, 2016 |
Sess. invern. 2017 App. di Laurea | Mar 16, 2017 | Mar 16, 2017 |
Period | From | To |
---|---|---|
Festività dell'Immacolata Concezione | Dec 8, 2015 | Dec 8, 2015 |
Vacanze di Natale | Dec 23, 2015 | Jan 6, 2016 |
Vacanze Pasquali | Mar 24, 2016 | Mar 29, 2016 |
Anniversario della Liberazione | Apr 25, 2016 | Apr 25, 2016 |
Festa del S. Patrono S. Zeno | May 21, 2016 | May 21, 2016 |
Festa della Repubblica | Jun 2, 2016 | Jun 2, 2016 |
Vacanze estive | Aug 8, 2016 | Aug 15, 2016 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Albertini Francesca
Cordoni Francesco Giuseppe
francescogiuseppe.cordoni@univr.itRinaldi Davide
davide.rinaldi@univr.itStudy Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2016/2017
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematical analysis 2 (2016/2017)
Teaching code
4S00031
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
The teaching is organized as follows:
Teoria 2
Esercitazioni
Teoria 1
Learning outcomes
Topics treated in this course are: Calculus for functions of several variables, sequences and series of functions, ordinary differential equations, Lebesgue measure and integral. Emphasis will be given to examples and applications.
Program
i) Calculus in several variables. Neighborhoods in several variables, continuity in several variables, directional derivatives, differential of functions in several variables, Theorem of Total Differential, gradient of scalar functions, Jacobian matrix for vector-valued functions, level curves of scalar functions. Parametrized surfaces, tangent and normal vectors, changes of coordinates. Higher order derivatives and differentials, Hessian matrix, Schwarz's Theorem, Taylor's Series.
(ii) Optimization problems for functions in several variables. Critical points, free optimization, constrained optimization, Lagrange's Multiplier Theorem, Implicit and inverse function theorem, Contraction Principle.
(iii) Integral of functions in several variables. Fubini and Tonelli theorems, integral on curves, change of variables formula.
(iv) Integral of scalar function on surfaces, vector fields, conservatice vector fields, scalar potentials, curl and divergence of a vector fields, introduction to differential forms, closed and exact forms, Poincare lemma, Gauss-Green formulas.
(v) Flux through surfaces, Stokes' Theorem, Divergence Theorem
(vi) Introduction to metric spaces and normed spaces, spaces of functions, sequence of functions, uniform convergence, function series, total convergence, derivation and integration of a series of functions.
(vii) Introduction to Lebesgue's Measure Theory. Measurable sets and functions, stability of measurable functions, simple functions, approximation results, Lebesgue integral. Monotone Convergence Theorem, Fatou's Lemma, Dominated convergence Theorem and their consequences.
(viii) Ordinary differential equation, existence and uniqueness results, Cauchy-Lipschitz's Theorem. Extension of a solution, maximal solution, existence and uniqueness results for systems of ODE, linear ODE of order n, Variation of the constants method,
other resolutive formulas.
(ix) Fourier's series for periodic functions, convergence results, application to solutions of some PDE.
Bibliography
Activity | Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|---|
Esercitazioni | Giuseppe De Marco | Analisi 2. Secondo corso di analisi matematica per l'università | Lampi di Stampa (Decibel Zanichelli) | 1999 | 8848800378 | |
Esercitazioni | M. Conti, D. L. Ferrario, S. Terracini, G. Verzini | Analisi matematica. Dal calcolo all'analisi, Vol. 1 (Edizione 1) | Apogeo | 2006 | 88-503-221 | |
Esercitazioni | V. Barutello, M. Conti, D.L. Ferrario, S. Terracini, G. Verzini | Analisi matematica. Dal calcolo all'analisi Vol. 2 | Apogeo | 2007 | 88-503-242 | |
Esercitazioni | Conti M., Ferrario D.L., Terracini S,. Verzini G. | Analisi matematica. Dal calcolo all'analisi. Volume 1. | Apogeo | |||
Esercitazioni | Conti F. et al. | Analisi Matematica, teoria e applicazioni | McGraw-Hill, Milano | 2001 | 8838660026 | |
Esercitazioni | Giuseppe de Marco | Analisi uno. Primo corso di analisi matematica. Teoria ed esercizi | Zanichelli | 1996 | 8808243125 | |
Esercitazioni | Giuseppe de Marco | Analisi Zero, presentazione rigorosa di alcuni concetti base di matematica per i corsi universitari (Edizione 3) | Edizione Decibel/Zanichelli | 1997 | 978-8808-19831-0 |
Examination Methods
The final exam consists of a written test followed, in case of a positive result, by an oral test. The written test consists of some exercises on the program.
The oral test will concentrate mainly but not exclusively on the theory.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Documents
Title | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |
2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
List of thesis proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.
Career management
Student login and resources
Erasmus+ and other experiences abroad
Ongoing orientation for students
The committee has the task of guiding the students throughout their studies, guiding them in their choice of educational pathways, making them active participants in the educational process and helping to overcome any individual difficulties.
It is composed of professors Lidia Angeleri, Sisto Baldo, Marco Caliari, Paolo dai Pra, Francesca Mantese, and Nicola Sansonetto
To send an email to professors: name.surname@univr.it