Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2015 Jan 29, 2016
II semestre Mar 1, 2016 Jun 10, 2016
Exam sessions
Session From To
Sessione straordinaria Appelli d'esame Feb 1, 2016 Feb 29, 2016
Sessione estiva Appelli d'esame Jun 13, 2016 Jul 29, 2016
Sessione autunnale Appelli d'esame Sep 1, 2016 Sep 30, 2016
Degree sessions
Session From To
Sess. autun. App. di Laurea Oct 12, 2015 Oct 12, 2015
Sess. autun. App. di Laurea Nov 26, 2015 Nov 26, 2015
Sess. invern. App. di Laurea Mar 15, 2016 Mar 15, 2016
Sess. estiva App. di Laurea Jul 19, 2016 Jul 19, 2016
Sess. autun. 2016 App. di Laurea Oct 11, 2016 Oct 11, 2016
Sess. autun 2016 App. di Laurea Nov 30, 2016 Nov 30, 2016
Sess. invern. 2017 App. di Laurea Mar 16, 2017 Mar 16, 2017
Holidays
Period From To
Festività dell'Immacolata Concezione Dec 8, 2015 Dec 8, 2015
Vacanze di Natale Dec 23, 2015 Jan 6, 2016
Vacanze Pasquali Mar 24, 2016 Mar 29, 2016
Anniversario della Liberazione Apr 25, 2016 Apr 25, 2016
Festa del S. Patrono S. Zeno May 21, 2016 May 21, 2016
Festa della Repubblica Jun 2, 2016 Jun 2, 2016
Vacanze estive Aug 8, 2016 Aug 15, 2016

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G M O R S Z

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Cordoni Francesco Giuseppe

symbol email francescogiuseppe.cordoni@univr.it

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Magazzini Laura

symbol email laura.magazzini@univr.it symbol phone-number 045 8028525

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it symbol phone-number +39 045 8027031

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number 045 802 8241

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Rossi Francesco

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06
ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-

2° Year

ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06

3° Year

ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00704

Coordinatore

Marco Caliari

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Period

I sem. dal Oct 2, 2017 al Jan 31, 2018.

Learning outcomes

The course will discuss, from both the analytic and computational points of view, the main methods for the numerical solution of Ordinary Differential Equations and classical Partial Differential Equations. Exponential Integrators, a current topic of active research in Applied Mathematics, will also be briefly discussed. The course has an important Laboratory component where the methods studied will be implemented using the MATLAB programming platform (using either the official Matlab from Mathworks or else the open source version GNU OCTAVE). At the end of the course the student will be expected to demonstrate that s/he has attained a level of competence in the computational and computer aspects of the course subject, the numerical solution of differential equations.

Program

The course will discuss the following topics:

* Boundary Value Problems: Finite Difference methods, Finite Elements, introduction to Spectral Methods (collocation, discrete Fourier Transform, Galerkin)

* Ordinary Differential Equations: numerical methods for initial value problems, step methods (theta method, variable stepsize Runge-Kutta, introduction to Exponential Integrators) and multistep, stability, absolute stability.

* Partial Differential Equations: basic properties of some of the classical PDEs (Laplace, Heat and Transport), the Method of Lines.

It is expected that there will be a tutor to help with the correction of assigned exercises and with the Laboratory sessions.

Reference texts
Author Title Publishing house Year ISBN Notes
Arieh Iserles A First Course in the Numerical Analysis of Differential Equations (Edizione 2) Cambridge University Press 2009 9780521734905

Examination Methods

The purpose of the exam is to see if the student is able to recall and produce the theory of numerical methods for differential equations presented during the lectures and Laboratory and knows how to use Computer resources for possible further investigation. Moreover, the student must show that s/he knows how to program in the specific software introduced during the course. The exam will consist of two parts. The first part will be held in a Laboratory where the student will be given two hours to individually implement the numerical methods necessary for the solution of the assigned questions. These questions will be based on finite difference methods with fixed stepsize for Boundary Value Problems, fixed stepsize methods for initial value problems and the Method of Lines for Partial Differential Equations. A pass will be given for a mark of 15/30 or higher. To be admitted to the second part of the exam, the oral, it is required to have first passed the written part. Marks for the written part will remain valid until, and not after, the beginning of the following semester. The oral exam will be based on all the material presented during the course, with the exception of the details of the Discrete Fourier Transform. The final course mark will be the average of the marks for the two parts of the exam.

???AdattamentoProvaEsameDSA???

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attachments

Title Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti