Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2016/2017

ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06

3° Year  activated in the A.Y. 2017/2018

ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
activated in the A.Y. 2016/2017
ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2017/2018
ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00022

Coordinator

Lidia Angeleri

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/02 - ALGEBRA

Period

I sem. dal Oct 3, 2016 al Jan 31, 2017.

Learning outcomes

The course provides an introduction to modern algebra. After presenting and discussing the main algebraic structures (groups, rings, fields), the focus is on Galois theory. Also some applications are discussed, in particular results on solvability of polynomial equations by radicals.

Program

Groups, subgroups, cosets, quotient groups. Solvable groups. Rings. Ideals. Homomorphisms. Principal ideal domains. Unique factorization domains. Euclidean rings. The ring of polynomials. Fields. Algebraic field extensions. The splitting field of a polynomial. Normal extensions. Separable extensions. Galois theory. Theorem of Abel-Ruffini.


Prerequisites: Linear Algebra

Reference texts
Author Title Publishing house Year ISBN Notes
S. Bosch Algebra Springer Unitext 2003 978-88-470-0221-0
I. N. Herstein Algebra Editori Riuniti 2003

Examination Methods

The exam consists of a written examination. The mark obtained in the written examination can be improved by the mark obtained for the homework and/or by an optional oral examination. Only students who have passed the written exam will be admitted to the oral examination.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents