Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
Primo semestre | 4-ott-2021 | 28-gen-2022 |
Secondo semestre | 7-mar-2022 | 10-giu-2022 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 31-gen-2022 | 4-mar-2022 |
Sessione estiva d'esame | 13-giu-2022 | 29-lug-2022 |
Sessione autunnale d'esame | 1-set-2022 | 30-set-2022 |
Sessione | Dal | Al |
---|---|---|
Sessione Estiva | 12-lug-2022 | 12-lug-2022 |
Sessione Autunnale | 18-ott-2022 | 18-ott-2022 |
Sessione Autunnale Dicembre | 6-dic-2022 | 6-dic-2022 |
Sessione Invernale | 13-mar-2023 | 13-mar-2023 |
Periodo | Dal | Al |
---|---|---|
Festa di Tutti i Santi | 1-nov-2021 | 1-nov-2021 |
Festa dell'Immacolata Concezione | 8-dic-2021 | 8-dic-2021 |
Festività natalizie | 24-dic-2021 | 2-gen-2022 |
Festa dell'Epifania | 6-gen-2022 | 7-gen-2022 |
Festività pasquali | 15-apr-2022 | 19-apr-2022 |
Festa della Liberazione | 25-apr-2022 | 25-apr-2022 |
Festività Santo Patrono di Verona | 21-mag-2022 | 21-mag-2022 |
Festa della Repubblica | 2-giu-2022 | 2-giu-2022 |
Chiusura estiva | 15-ago-2022 | 20-ago-2022 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Analisi matematica I
Architettura degli elaboratori
2° Anno Attivato nell'A.A. 2022/2023
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2023/2024
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Analisi matematica I
Architettura degli elaboratori
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Probabilita' e statistica (2021/2022)
Codice insegnamento
4S02843
Crediti
6
Lingua di erogazione
Italiano
Offerto anche nei corsi:
- Probabilità e statistica del corso Laurea in Bioinformatica
- Probabilità e statistica del corso Laurea in Bioinformatica
- Probabilità e statistica del corso Laurea in Bioinformatica
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
L'insegnamento è organizzato come segue:
Teoria
Laboratorio
Obiettivi formativi
Il corso si propone di fornire i concetti fondamentali della statistica descrittiva e del calcolo delle probabilità, in relazione alla possibilità di modellizzare problemi concreti attraverso l'uso di metodi probabilistici e, nel contempo, di sottolineare la naturale applicazione di tali concetti alla statistica matematica. Il corso vuole inoltre fornire degli strumenti concreti per applicare le principali tecniche statistiche a casi reali. Al termine del corso lo studente dovrà dimostrare di avere conoscenze e capacità di comprensione delle principali tecniche statistiche per la descrizione e l'analisi dei fenomeni oggetto di studio; avere capacità di applicare le conoscenze acquisite e capacità di comprensione per interpretare i risultati delle analisi statistiche applicate in maniera critica e proattiva, anche attraverso gli strumenti mostrati; saper sviluppare le competenze necessarie per proseguire gli studi in modo autonomo nell’ambito dell'analisi statistica.
Programma
------------------------
MM: Teoria
------------------------
(1) Statistica descrittiva. Organizzazione e descrizione dei dati (tabelle e grafici delle frequenze). Le grandezze che sintetizzano i dati (media, mediana e moda campionaria, varianza e deviazione standard campionarie, percentili campionari, box plot). Campioni normali. Coefficiente di correlazione campionaria. (2) Introduzione alla probabilità. Elementi di probabilità: spazio degli esiti e degli eventi, i diagrammi di Venn e l’algebra degli eventi, assiomi della probabilità, spazi di esiti equiprobabili, probabilità condizionata, fattorizzazione di un evento e formula di Bayes, eventi indipendenti. Variabili aleatorie e valore atteso: variabili aleatorie discrete e continue, valore atteso e proprietà, varianza, la covarianza e la varianza della somma di variabili aleatorie. La funzione generatrice dei momenti. La legge debole dei grandi numeri. Modelli di variabili aleatorie: principali modelli di variabili aleatorie e distribuzioni che derivano da quella normale (chi-quadro, t, F). (3) Statistica inferenziale. La distribuzione delle statistiche campionarie. Stima parametrica (stimatori di massima verosimiglianza, intervalli di confidenza). Verifica delle ipotesi e livelli di significatività. (4) Regressione. Stima dei parametri di regressione. Distribuzione degli stimatori. Inferenza statistica sui parametri di regressione. Coefficiente di determinazione e coefficiente di correlazione campionaria. Analisi dei residui: verifica del modello. Linearizzazione. Minimi quadrati pesati.
------------------------
MM: Laboratorio
------------------------
Il corso prevede una serie di laboratori in aula informatica con esercitazioni in ambiente MATLAB. Dopo un'introduzione all'ambiente MATLAB e alle principali funzioni e tool utili per la statistica, verranno proposti esercizi di statistica descrittiva, probabilità, calcolo della funzione di densità (pdf) e della funzione di ripartizione (cdf) per modelli di variabili aleatorie, generazione di dati random, stima parametrica, test d’ipotesi per distribuzioni e regressione lineare. I laboratori completano le lezioni consolidando l'apprendimento e sviluppando capacità pratiche di problem-solving. Modalità di erogazione della didattica. Lezioni frontali alla lavagna e con ausilio di diapositive a supporto, esercitazioni in aula ed esercitazioni in laboratorio. Il materiale didattico sarà reso disponibile agli studenti iscritti al corso sulla piattaforma Moodle. Tale materiale comprende le presentazioni delle lezioni in formato PDF e il materiale relativo alle attività di laboratorio. Per approfondimenti ed integrazioni si consiglia di consultare i testi di riferimento.
Bibliografia
Modalità d'esame
Prova scritta costituita da domande di teoria (test a scelta multipla), problemi da risolvere e domande sulla parte di laboratorio sugli argomenti del programma (a risposta aperta). Per superare l'esame lo studente dovrà dimostrare di: - aver compreso i concetti di base della teoria della probabilità e della statistica; - saper risolvere problemi applicando le conoscenze acquisite; - conoscere l’ambiente Matlab nel contesto statistico e probabilistico.
Tipologia di Attività formativa D e F
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
2° 3° | Lab.: The fashion lab (1 cfu) | D |
Caterina Fratea
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
2° 3° | Introduzione alla robotica per studenti di materie scientifiche | D |
Paolo Fiorini
(Coordinatore)
|
2° 3° | Linguaggio Programmazione Matlab-Simulink | D |
Bogdan Mihai Maris
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
2° 3° | Lab.: The fashion lab (1 cfu) | D |
Caterina Fratea
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
2° 3° | Introduzione alla robotica per studenti di materie scientifiche | D |
Paolo Fiorini
(Coordinatore)
|
2° 3° | Introduzione alla stampa 3D | D |
Franco Fummi
(Coordinatore)
|
2° 3° | Linguaggio Programmazione LaTeX | D |
Enrico Gregorio
(Coordinatore)
|
2° 3° | Progettazione di componenti hardware su FPGA | D |
Franco Fummi
(Coordinatore)
|
2° 3° | Prototipizzazione con Arduino | D |
Franco Fummi
(Coordinatore)
|
2° 3° | Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore | D |
Roberto Giacobazzi
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente | |
---|---|---|---|---|
1° | Conoscenze per l'accesso: matematica | D |
Franco Zivcovich
|
|
2° 3° | Linguaggio programmazione Python | D |
Giulio Mazzi
(Coordinatore)
|
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Prova Finale
Per essere ammessi alla prova finale occorre avere conseguito tutti i crediti nelle attività formative previste dal piano degli studi. Alla prova finale (esame di laurea) sono riservati 6 CFU. La Laurea in Informatica viene conseguita dalla/o studentessa/studente superando con esito positivo l'esame di laurea e completando in questo modo i 180 CFU stabiliti dal piano di studi. L'esame di laurea consiste in un colloquio che può essere basato su al più due delle seguenti opzioni: - breve elaborato scritto, anche in lingua inglese, su argomento assegnato; - esame orale, anche in lingua inglese, su argomento assegnato; - esame scritto, anche in lingua inglese, su argomento assegnato. La forma dell'esame viene concordata tra lo studente e il docente referente (relatore) il quale è membro della commissione d'esame. La valutazione dell'esame è basata sul livello di approfondimento dimostrato dallo studente, sulla chiarezza espositiva, e sulla capacità dello studente di inquadrare l'argomento assegnato in un contesto più ampio.
Svolgimento della prova finale.
La/lo studentessa/studente potrà avvalersi del supporto dei docenti del Dipartimento di Informatica per la scelta e l'approfondimento richiesto. È obbligo dei docenti fornire assistenza nell'ambito delle proprie attività di tutorato e ricevimento alle/agli studentesse/studenti per quanto riguarda l'approfondimento richiesto. Il punteggio finale di Laurea è stabilito da una apposita commissione di Laurea secondo le modalità indicate nel Regolamento di Ateneo, che esprime un giudizio finale in centodecimi con eventuale lode. Il punteggio minimo per il superamento dell'esame finale è di 66/110. II voto di ammissione è determinato rapportando la media pesata sui CFU degli esami di profitto a 110 e successivamente arrotondando il risultato all'intero più vicino. A parità di distanza, si arrotonda all'intero superiore. Per media degli esami di profitto si intende la media ponderata sui crediti. E' previsto un incremento al massimo di 8/110 rispetto al voto di ammissione, di cui 4 punti riservati alla valutazione dell'esame di laurea e 4 punti riservati alla valutazione del curriculum della/o studentessa/studente. La valutazione del curriculum avviene attraverso un calcolo che tiene conto positivamente delle lodi conseguite e degli eventuali periodi di Erasmus, mentre tiene conto negativamente degli eventuali anni fuori corso: se in corso: 3,5 + 0,2 * numero lodi; se fuori corso: 3,5 – 0,5* numero anni fuori corso + 0,1 * numero lodi; 1 punto ogni 3 mesi di Erasmus effettuato. L'attribuzione della lode, nel caso di un incremento che porti ad una votazione che raggiunga o superi 110/110, è a discrezione della commissione di Laurea nonché attribuita se il parere dei membri della commissione è unanime. Il relatore dell'esame di laurea potrà essere un qualunque docente strutturato dell'Ateneo che soddisfa almeno uno dei seguenti requisiti: componente del Collegio Didattico del corso di laurea, oppure componente del Dipartimento di Informatica, oppure che insegna in un SSD presente nel piano del corso di laurea.
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
Tesi in ragionamento automatico | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
Tesi in ragionamento automatico | Theory of computation - Logic |
Tesi in ragionamento automatico | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Argomenti vari |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Argomenti vari |
Docenti tutor
Modalità e sedi di frequenza
Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.