Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

For the year 2022/2023 No calendar yet available

Exam calendar

To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Artegiani Elisa

Assfalg Michael +39 045 802 7949

Bertoldi Mariarita 0458027671

Busti Fabiana +39 045 812 6633

Cazzoletti Lucia 045 8027656

Fiammengo Roberto 0458027038

Mazzali Gloria +39 045 807 3577

Nardon Chiara

Piccinelli Fabio +39 045 802 7097

Pietrobelli Angelo +39 045 812 7125

Pogliaghi Silvia 045 8425128

Romeo Alessandro +39 045 802 7974-7936; Lab: +39 045 802 7808

Verlato Giuseppe 045 8027628

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

AGR/15 ,CHIM/08
1 module among the following
MED/12 ,MED/13 ,MED/14
1 module among the following
Final exam
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

S Placements in companies, public or private institutions and professional associations

Teaching code






Scientific Disciplinary Sector (SSD)


The teaching is organized as follows:





Secondo semestre

Academic staff

Alessandro Romeo





Secondo semestre

Academic staff

Elisa Artegiani

Learning objectives

The Physics lectures aim to give a basic knowledge of the whole physics of mechanics and electromagnetism, enough for the understanding of physical phenomena in biotechnology and in life science. The lectures will have a strong applicative part with exercises in class in order to ease the comprehension of the theoretical concepts and to develop the ability in problem solving.

Examination methods

The exam is written, with a number of exercises to be solved (typically 5 to 7) on the course program and similar to those carried out in the classroom.
You will be able to use the textbooks, calculator and notes during the exam.



1. Physical quantities, approximations
2. Motion in one dimension
3. Motion in two dimensions
4. Newton Laws
5. Energy
6. Momentum
7. Rotational motion
8. Gravity laws
9. Oscillation laws
10. Fluid Mechanics
11. Hints of Thermodynamics
12. Electric Field
13. Electric potential
14. Electric circuits
15. Charges in motion: electromagnetism
16. Magnetism
17. Waves
Detailed program:

-Introduction to vectors
Dimensional analysis, unit conversion, coordinate systems, trigonometry, vector and scalar quantities, scalar product, vector sum, vector product: graphical method and analytical method.

Average speed and instantaneous speed, hints on derivatives, constant speed, average acceleration and instantaneous acceleration, falling bodies, carriers position-velocity-acceleration, projectile motion, particle in uniform circular motion, radial and tangential acceleration, relative velocity and reference systems.

-Newton's laws
Concept of Force, Newton's first law, the concept of mass, Newton's second law-resultant force, gravitational force and weight, Newton's third law, static friction and kinetic friction, uniform circular motion and Newton's law, notes on the fundamental forces) , conservative and dissipative forces.

-Energy and energy transfer
Concept of Work, work done by a constant force, work done by a variable force, the concept of kinetic energy, non-isolated systems, dynamic friction and work, potential energy, isolated systems, the concept of conservative force, potential energy from the gravitational force, theorem kinetic energy

-Quantity Momentum and impact
Momentum and its conservation, the concept of momentum, elastic collision and inelastic collision, collisions in two dimensions, the center of mass motion of a particle system.

- The rotational motion
Position, velocity and angular acceleration, concept of rigid body, rigid body in constant rotation, rigid body in constant acceleration, rotational and translational quantities, concept of rotational kinetic energy, the concept of torque, call the vector product, rigid body and resultant moment of forces, levers, definition of angular momentum, conservation of angular momentum, rolling of rigid bodies, rotational kinetic energy.

Outline of Kepler's laws, escape velocity, circular and elliptical orbit.

-The oscillatory motion
Particle attached to a spring, simple harmonic motion, Hooke's law, energy in a harmonic motion and soft, simple pendulum and nods of compound pendulum, damped oscillations.

- Fluid Mechanics
Concept of pressure, pressure and depth, pressure measurements, Archimedes' principle, the law of Pascal, ideal fluid, fluid dynamics and continuity equation of fluid flow, Bernoulli's theorem, viscous fluid.

- Thermodynamics
Concept of temperature, thermal expansion, concept of heat, ideal gas law, hints of statistical thermodynamics, thermodynamic transformations, entropy.

-Electric Force and electric fields
Properties of electric charges, insulators and conductors, the concept of charge, Coulomb's law, electric force, the concept of field, electric field, electric field lines, the concept of electric dipole, motion of charged particles in a uniform electric field, electrical flow, Gauss theorem (with proof), application of Gauss theorem (various examples), conductors in electrostatic equilibrium.

- Electric potential
Potential difference and electric potential, the potential difference in a uniform electric field, electric potential energy, potential in a non-uniform electric field, electric potential and electric field, electric potential of a charged conductor, capacity concept, capacitors, connection of capacitors , energy of a charged capacitor.

-Current and electric circuits
Introduction to electric current, the concept of electrical resistance, Ohm's law, resistors in series and parallel, Kirchoff's laws, Joule's law.

Introduction to the magnetic field, charged particle in a uniform magnetic field, magnetic force, the Lorentz force, Read Maxwell.

Electromagnetic and mechanical waves, refractive index, interference, lenses, maxwell lenses.

Learning assessment procedures

The exam is written, with a number of exercises to be solved (typically 5 to 7) on the course program and similar to those carried out in the classroom.
You will be able to use the textbooks, calculator and notes during the exam.

Exam methods are not differentiated between attending and non-attending students.

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Area riservata studenti