Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I semestre 1-ott-2024 31-gen-2025
II semestre 3-mar-2025 13-giu-2025
Sessioni degli esami
Sessione Dal Al
Sessione invernale 3-feb-2025 28-feb-2025
Sessione estiva 16-giu-2025 31-lug-2025
Sessione autunnale 1-set-2025 30-set-2025
Vacanze
Periodo Dal Al
Tutti i Santi 1-nov-2024 1-nov-2024
Festa dell'Immacolata 8-dic-2024 8-dic-2024
Vacanze di Natale 23-dic-2024 6-gen-2025
Vacanze di Pasqua 18-apr-2025 21-apr-2025
Festa della Liberazione 25-apr-2025 25-apr-2025
Festa del Lavoro 1-mag-2025 1-mag-2025
Festa del Santo Patrono 21-mag-2025 21-mag-2025
Festa della Repubblica 2-giu-2025 2-giu-2025
Vacanze estive 11-ago-2025 16-ago-2025

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C D F G M P Q R S T

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Boscolo Galazzo Ilaria

symbol email ilaria.boscologalazzo@univr.it symbol phone-number +39 045 8127804

Brusini Lorenza

symbol email lorenza.brusini@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Caputo Ariel

symbol email ariel.caputo@univr.it

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Gialanella Stefano

symbol email stefano.gialanella@unitn.it symbol phone-number 0461 282420

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Meli Daniele

symbol email daniele.meli@univr.it symbol phone-number +39 045 802 7908

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number +39 045 802 7932

Setti Francesco

symbol email francesco.setti@univr.it symbol phone-number +39 045 802 7804

Tamellin Iacopo

symbol email iacopo.tamellin@univr.it

Toniolo Sara

symbol email sara.toniolo@univr.it symbol phone-number 045 802 8683

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Sarà attivato nell'A.A. 2025/2026

InsegnamentiCreditiTAFSSD
Sarà attivato nell'A.A. 2025/2026
InsegnamentiCreditiTAFSSD
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
4 modules among the following
6
B
ING-INF/05
6
B
ING-INF/04
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Further activities
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S012352

Crediti

12

Coordinatore

Marco Cristani

Lingua di erogazione

Inglese en

Offerto anche nei corsi:

Corsi Singoli

Autorizzato

L'insegnamento è organizzato come segue:

DATA MANAGEMENT SYSTEMS en

Crediti

6

Periodo

II semestre

DEEP LEARNING en

Crediti

6

Periodo

II semestre

Obiettivi di apprendimento

L'obiettivo del corso è consentire agli studenti di acquisire conoscenze approfondite delle metodologie e degli strumenti necessari per gestire grandi moli di dati nei nuovi sistemi non basati sul modello relazionale e di acquisire conoscenze approfondite delle nuove tecniche di machine learning basate su reti profonde per il processamento dei dati. Nel primo modulo, Data Management Systems, si considereranno quindi sistemi basati su modelli semi-strutturati o document-based, NoSQL e modelli estesi con le dimensioni tempo e spazio. In particolare, verranno considerati i sistemi che devono memorizzare dati prodotti anche da sensori e dispositivi mobili in modo tale che sia possibile una corretta integrazione di tali nuove fonti di dati con il sistema informativo aziendale. Lo studente al termine del corso sarà in grado di progettare e interrogare basi di dati non tradizionali con strumenti tipici dell’approccio NoSQL. Nel secondo modulo, lo studente apprenderà i fondamenti delle reti neurali come evoluzione di modelli lineari, inclusa l'architettura, le funzioni di attivazione e la backpropagation. Conoscerà le basi degli algoritmi di ottimizzazione utilizzati nell'addestramento delle reti neurali. Acquisirà compestense sulle architetture di reti neurali di base: lo studente conoscerà vari tipi di reti neurali come le reti neurali convoluzionali (CNN) per l'analisi delle immagini, le reti neurali ricorrenti (RNN) per i dati sequenziali e i transformer per l'elaborazione del linguaggio naturale. Sarà in grado di comprendere i principi di progettazione alla base di queste architetture e delle relative applicazioni, e le teorie matematiche sottostanti. Nondimeno, sarà in grado di applicare le tecniche a problemi reali, capendo quali debbano essere i dati in input e in output. Lo studente comprenderà l'importanza della preelaborazione dei dati e come preparare i dati per l'addestramento. Sarà in grado di applicare tecniche di data augmentation per aumentare la diversità dei dati di addestramento. Infine, acquisirà competenze su achitetture di reti neurali avanzate: Lo studente sarà in grado di affrontare problemi di elaborazione del linguaggio naturale (NLP) e visione artificiale (CV) come la classificazione del testo, il riconoscimento di oggetti e la traduzione automatica. A questo proposito, lo studente saprà come utilizzare strumenti avanzati quali variational encoders, generative adversarial network, NERF, large language models. Lo studente apprenderà anche le basi dell’interpretabilità di una rete neurale. Questo permetterà di offrire strumenti di garanzia sui risultati prodotti dalle reti neurali. Al termine del corso avrà anche acquisito esperienza pratica con framework di deep learning popolari come TensorFlow, PyTorch e Keras. Sarà in grado di creare, addestrare e valutare modelli di deep learning utilizzando questi framework.

Prerequisiti e nozioni di base

Modulo di Data Management: Fondamenti di informatica (logica di programmazione, strutture dati di base), sistemi operativi (gestione dei file, concetti di processi e thread), matematica di base (algebra, logica). TCP/IP e modelli di rete.

Modulo di Deep Learning: Algebra Lineare (Vettori e matrici, operazioni con matrici, autovalori e autovettori, spazi vettoriali e loro trasformazioni), Calcolo (derivate e integrali, derivate parziali), Probabilità e statistica, Programmazione (Python o Matlab), Machine learning (modelli supervisionati e non supervisionati)

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Criteri di composizione del voto finale

Il voto finale viene assegnato come somma dei voti dei due moduli, i quali andranno da 9 (la sufficienza) a 15 (il massimo per un insegnamento). La lode verrà assegnata di comune accordo dai docenti dei due moduli.

Tipologia di Attività formativa D e F

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Contamination lab

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

5. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didatticoqui sono riportate le informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Si ricorda, inoltre, che per i tirocini attivati dal 1 ottobre 2024 sarà possibile riconoscere le ore eccedenti in termini di crediti di tipologia D limitatamente alle sole esperienze di tirocinio svolte presso enti ospitanti esterni all’Ateneo.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto valide per l'a.a. 2024/25

 

I semestre Dal 01/10/24 Al 31/01/25
anni Insegnamenti TAF Docente
1° 2° Introduzione alla programmazione di smart contract per Ethereum D Sara Migliorini (Coordinatore)
1° 2° Oltre Arduino: dal prototipo al prodotto con microcontroller STM D Franco Fummi (Coordinatore)
1° 2° Progettazione di app REACT D Graziano Pravadelli (Coordinatore)
1° 2° Progettazione di componenti hardware su FPGA D Franco Fummi (Coordinatore)
II semestre Dal 03/03/25 Al 13/06/25
anni Insegnamenti TAF Docente
1° 2° Linguaggio Programmazione LaTeX D Enrico Gregorio (Coordinatore)
1° 2° Prototipizzazione con Arduino D Franco Fummi (Coordinatore)
1° 2° Sfide di programmazione D Romeo Rizzi (Coordinatore)
1° 2° Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore D Mila Dalla Preda (Coordinatore)

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Modalità e sedi di frequenza

Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Erasmus+ e altre esperienze all’estero


Prova Finale

Scadenziari e adempimenti amministrativi

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Necessità di attivare un tirocinio per tesi

Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.

Regolamento della prova finale

Alla tesi di laurea sono dedicati 24 CFU, per un lavoro che non deve superare i 4-5 mesi a tempo pieno per la/o studentessa/studente.

Scopo della Tesi di Laurea
La Tesi di Laurea costituisce un importante ed imprescindibile passo nella formazione della/del futura/o laureata/o Magistrale in Computer Engineering for Intelligent Systems. Scopo della tesi è quello di sviluppare uno studio quanto più originale che può culminare con un progetto applicativo o un risultato teorico connesso a specifici problemi di natura progettuale o una rassegna critica sullo stato dell'arte in un determinato ambito di studio. Nel
corso dello svolgimento della Tesi il laureando dovrà, sotto la guida della relatrice/relatore ed eventuali correlatrici/correlatori, affrontare lo studio e l'approfondimento degli argomenti scelti, ma anche acquisire capacità di sintesi e applicazione creativa delle conoscenze acquisite. Il contenuto della Tesi deve essere inerente a tematiche dell'Ingegneria e delle Scienze Informatiche o discipline strettamente correlate. La Tesi consiste nella presentazione in forma scritta di attività che possono essere articolate come:

  1. progettazione e sviluppo di applicazioni o sistemi;
  2. analisi critica di contributi tratti dalla letteratura scientifica;
  3. contributi originali di ricerca.

La Tesi sarà compilata in lingua inglese, e può essere discussa sia in inglese che in italiano, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni.

Modalità di svolgimento e valutazione
Ogni Tesi di Laurea può essere interna o esterna a seconda che sia svolta presso l'Università di Verona o in collaborazione con altro ente, rispettivamente. Ogni Tesi prevede una/un relatrice/relatore eventualmente affiancata/o da una/uno o più correlatrici/correlatori e una/un controrelatrice/controrelatore. La/il controrelatrice/controrelatore è nominata/o dal Collegio Didattico di Informatica almeno 20 giorni prima della discussione della Tesi, verificata l'ammissibilità della/o studentessa/studente a sostenere l’esame di Laurea Magistrale. Per quanto riguarda gli aspetti giuridici (e.g., proprietà intellettuale dei risultati) legati alla Tesi e ai risultati ivi contenuti si rimanda alla legislazione vigente in materia ed ai Regolamenti di Ateneo.

Valutazione delle Tesi
I criteri su cui sono chiamati ad esprimersi relatore ed eventuali correlatori e controrelatore sono i seguenti:

  1. livello di approfondimento del lavoro svolto, in relazione allo stato dell'arte dei settori disciplinari di pertinenza informatica;
  2. avanzamento conoscitivo o tecnologico apportato dalla Tesi;
  3. impegno criticonespresso dalla/dal laureanda/o;
  4. impegno sperimentale e/o di sviluppo formale espresso dal laureando;
  5. autonomia di lavoro espressa dalla/dal laureanda/o;
  6. significatività delle metodologie impiegate;
  7. accuratezza dello svolgimento e della scrittura;
  8. la/il controrelatrice/controrelatore non è chiamata/o ad esprimersi sul punto 5.

Voto di Laurea
Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:

  • 1. media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;
  • 2. valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:
    • a) attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-7 elencati sopra;
    • b) attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per la qualità della presentazione;
    • c) somma dei coefficienti attribuiti ai punti a e b.

La presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dal Collegio Didattico di Informatica, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata legale del corso degli studi possono essere utilizzati dalla Commissione di Laurea per attribuire un ulteriore incremento di un punto. Qualora la somma ottenuta raggiunga 110/110, la Commissione può decidere l'attribuzione della lode. La lode viene proposta e discussa dalla Commissione, senza l'adozione di particolari meccanismi di calcolo automatico. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime.

Tesi esterne
Una Tesi esterna viene svolta in collaborazione con un ente diverso dall'Università di Verona. In tal caso, la/il laureanda/o dovrà preventivamente concordare il tema della Tesi con una/un relatrice/relatore dell'Ateneo. Inoltre, è previsto almeno una/un correlatrice/correlatore appartenente all'ente esterno, quale riferimento immediato per la/o studentessa/studente nel corso dello svolgimento dell’attività di Tesi. Relatrice/relatore e correlatrici/correlatori devono essere indicate/i nella domanda di assegnazione Tesi. Le modalità assicurative della permanenza della/o studentessa/studente presso l'Ente esterno sono regolate dalle norme vigenti presso l'Università di Verona. Se la Tesi si configura come un periodo di formazione presso tale ente, allora è necessario stipulare una convenzione tra l'Università e detto ente. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici. Per tutto quanto riguarda aspetti non strettamente scientifici (e.g. convenzioni, assicurazioni) ci si rifà alla delibera del SA. del 12 gennaio 1999.

Relatrice/relatore,correlatrici/correlatori,controrelatrici controrelatrici/controrelatori
La Tesi di Laurea viene presentata da una/un relatrice/relatore docente di ruolo del Dipartimento di Informatica o da un docente esterno al dipartimento previa approvazione del Collegio Didattico che ne valuterà la congruità di settore e la competenza. Oltre a coloro che hanno i requisiti indicati rispetto al ruolo di relatrice/relatore (come indicato sopra), possono svolgere il ruolo di correlatrici/correlatori anche ricercatrici/ricercatori operanti in istituti di ricerca extrauniversitari assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca, personale tecnico del Dipartimento, cultrici/cultori della materia nominate/i da un Ateneo italiano ed ancora in vigore, referenti aziendali esperte/i nel settore considerato nella Tesi. Può essere nominata/o controrelatrice/controrelatore qualunque docente professoressa/professore o ricercatrice/ricercatore del Dipartimento di Informatica dell'Università degli Studi di Verona, che risulti particolarmente competente nell'ambito specifico di studio della Tesi.