Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD

2° Anno   Attivato nell'A.A. 2021/2022

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Attivato nell'A.A. 2021/2022
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
1 module between the following
Tra gli anni: 1°- 2°
1 module between the following 
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Other activities
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S001102

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/07 - FISICA MATEMATICA

Periodo

II semestre dal 1 mar 2021 al 11 giu 2021.

Obiettivi formativi

Il corso è dedicato ad un approccio moderno e formale alla meccanica classica. Il principale obiettivo del corso consiste nell'introduzione di alcune tecniche di analisi globale e numerica, geometria differenziale e di sistemi dinamici al fine di formalizzare un modello di sistemi meccanici conservativi ad un numero finito di gradi di liberta`. Alla fine del corso uno studente dovrà essere in grado di costruire un modello di fenomeni fisici conservativi per sistemi ad un numero finito di gradi di liberta`, scrivere le equazioni del moto sia da un punto di vista Lagrangiano che Hamiltoniano e ricavare le principali proprieta` dinamiche del sistema.

Programma

• Introduzione. Il corso iniziera` con un rapido ripasso di alcune nozioni di base di Meccanica Newtoniana. La struttura geometrica dello spazio tempo di Galileo e assiomi della meccanica classica. Sistemi di particelle ed equazioni cardinali della dinamica. Campi di forze conservative. Massa in un campo centrale e il sistema dei due corpi.

• Meccanica Lagrangiana ed Hamiltoniana su Rn. Equivalenza tra equazioni di Euler-Lagrange ed equazioni di Newton nel caso meccanico. Principio di Hamilton e conservazione dell'energia generalizzata. Invarianza delle equazioni di Euler-Lagrange per cambiamenti di coordinate nello spazio delle configurazioni. Trasformazione di Legendre ed equazioni canoniche di Hamilton. Equivalenza tra equazioni canoniche, equazioni di Euler-Lagrange ed equazioni di Hamilton nel caso meccanico. Variabili cicliche e riduzione in ambito Hamiltoniano. Parentesi di Poisson e integrali primi.

• Richiami di geometria differenziale: campi vettoriali su varieta`, flusso di un campo, coniugazione di flussi. Derivata di Lie, integrali primi, foliazioni invarianti e riduzione dell'ordine.

• Meccanica Lagrangiana su varieta`. Sistemi vincolati: il principio di d'Alembert e le equazioni di Lagrange. Invarianza delle equazioni di Lagrange per cambiamenti di coordinate. Integrale di Jacobi. Stabilita` nei sistemi Lagrangiani e piccole oscillazioni. Coordinate cicliche, Teorema di Noether, integrali primi e riduzione di Routh.

• Corpi rigidi. Il gruppo delle rotazioni e sua rappresentazione matriciale. Velocita` angolare e algebra di Lie del gruppo delle rotazioni. Sistema di riferimento nello spazio e nel corpo. Equazioni di Euler.

• Applicazioni: il pendolo di Foucault, il sistema di Kepler, la stabilizzazione magnetica.

• Corpi rigidi. Il gruppo delle rotazioni e sua rappresentazione matriciale. Velocita` angolare e algebra di Lie del gruppo delle rotazioni. Sistema di riferimento nello spazio e nel corpo. Equazioni di Euler.

• Introduzione ai gruppi e alle algebre di Lie: azioni di gruppo, trivializzazione e teoria di Euler-Poicare` e relative applicazioni.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
R. Abraham and J.E. Marsden Foundations of mechanics. Second Edition. (Edizione 2) Addison-Wesley 1987 080530102X Freely available at https://authors.library.caltech.edu/25029/
D.D. Holm, T. Schmah and C. Stoica Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Edizione 1) Oxford University Press 2009
J.E. Marsden and T.S. Ratiu Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems (Edizione 2) Springer-Verlag 1999

Modalità d'esame

Lo studente dovrà essere in grado di formalizzare e risolvere modelli matematici utilizzati in diverse discipline scientifiche, adoperando, adattando e sviluppando i metodi avanzati visti durante l’insegnamento. A tal fine la valutazione finale consiste in una prova scritta e una orale.

Prova scritta: Una domanda/esercizio per ciascuna parte del corso (Parte I e Parte II), il cui svolgimento può richiedere l’utilizzo del calcolatore.

Prova orale: Argomento a scelta e discussione dello scritto con domande.

L'argomento a scelta può essere sostituito dallo sviluppo di un mini-progetto da concordare con il docente.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI